Displaying all 7 publications

Abstract:
Sort:
  1. Irfan M, Irfan M, Shah SM, Baig N, Saleh TA, Ahmed M, et al.
    Mater Sci Eng C Mater Biol Appl, 2019 Oct;103:109769.
    PMID: 31349444 DOI: 10.1016/j.msec.2019.109769
    Non-covalent electrostatic interaction between amide nitrogen and carbonyl carbon of shorter chain length of polyvinylpyrrolidone (PVP-k25) was developed with in-house carboxylic oxidized multiwall carbon nanotubes (O-MWCNT) and then blended with Polyethersulfone (PES) polymer. FTIR analysis was utilized to confirm bonding nature of nano-composites (NCs) of O-MWCNT/PVP-k25 and casting membranes. Non-solvent induces phase separation process developed regular finger-like channels in composite membranes whereas pristine PES exhibited spongy entities as studied by cross sectional analysis report of FESEM. Further, FESEM instrument was also utilized to observe the dispersion of O-MWCNT/PVP based nanocomposite (NCs) with PES and membranes leaching phenomena analysis. Contact angle experiments described 24% improvement of hydrophilic behaviour, leaching ratio of additives was reduced to 1.89%, whereas water flux enhanced up to 6 times. Bovine serum albumin (BSA) and lysozyme based antifouling analysis shown up to 25% improvement, whereas 84% of water flux was regained after protein fouling than pristine PES. Anticoagulant activity was reported by estimating prothrombin, thrombin, plasma re-calcification times and production of fibrinogen cluster with platelets-adhesions photographs and hemolysis experiments. Composite membranes exhibited 3.4 and 3 times better dialysis clearance ratios of urea and creatinine solutes as compared to the raw PES membrane.
    Matched MeSH terms: Anticoagulants/chemistry*
  2. Kandel S, Zaidi STR, Wanandy ST, Ming LC, Castelino RL, Sud K, et al.
    Perit Dial Int, 2017 11 21;38(1):49-56.
    PMID: 29162678 DOI: 10.3747/pdi.2017.00115
    BACKGROUND: Intraperitoneal (IP) administration of ceftazidime is recommended for the treatment of peritoneal dialysis-associated peritonitis (PDAP) from Pseudomonas. Patients with PDAP may also need IP heparin to overcome problems with drainage of turbid peritoneal dialysis (PD) fluids and blockage of catheters with fibrin. Physico-chemical stability of ceftazidime and heparin, and biological stability of heparin in many types of PD solutions is unknown. Therefore, we investigated the stability of ceftazidime and heparin in 4 types of PD solutions.

    METHODS: A total of 12 PD bags (3 for each type of solution) containing ceftazidime and heparin were prepared and stored at 4°C for 120 hours, and then at 25°C for 6 hours, and finally at 37°C for 12 hours. An aliquot was withdrawn after predefined time points and analyzed for the concentration of ceftazidime and heparin using high-performance liquid-chromatography (HPLC). Samples were assessed for pH, color changes, particle content, and anticoagulant activity of heparin.

    RESULTS: Ceftazidime and heparin retained more than 91% of their initial concentration when stored at 4°C for 120 hours followed by storage at 25°C for 6 hours and then at 37°C for 12 hours. Heparin retained more than 95% of its initial activity throughout the study period. Particle formation was not detected at any time under the storage conditions. The pH and color remained essentially unchanged throughout the study.

    CONCLUSIONS: Ceftazidime-heparin admixture retains its stability over long periods of storage at different temperatures, allowing its potential use for PDAP treatment in outpatient and remote settings.

    Matched MeSH terms: Anticoagulants/chemistry*
  3. Tan NH, Ponnudurai G
    Comp. Biochem. Physiol., B, 1991;100(2):361-5.
    PMID: 1799979
    1. The hemorrhagic, procoagulant, anticoagulant, phosphodiesterase, alkaline phosphomonoesterase, 5'-nucleotidase, hyaluronidase, arginine ester hydrolase, phospholipase A, L-amino acid oxidase and protease activities of 26 samples of venoms from 13 species of Bothrops were determined, and the Sephadex G-75 gel filtration patterns for some of the venoms also examined. 2. The results show that while there are considerable individual variations in the biological activities of many of the Bothrops venoms tested, there are some common characteristics at the genus and species levels. 3. The differences in the biological properties of the Bothrops venoms tested can be used for the differentiation of most Bothrops species examined.
    Matched MeSH terms: Anticoagulants/chemistry
  4. Diosdado A, Simón F, Morchón R, González-Miguel J
    Parasitology, 2020 Apr;147(5):559-565.
    PMID: 31992384 DOI: 10.1017/S0031182020000104
    Dirofilaria immitis is a parasitic nematode that survives in the circulatory system of suitable hosts for many years, causing the most severe thromboembolisms when simultaneous death of adult worms occurs. The two main mechanisms responsible for thrombus formation in mammals are the activation and aggregation of platelets and the generation of fibrin through the coagulation cascade. The aim of this work was to study the anticoagulant potential of excretory/secretory antigens from D. immitis adult worms (DiES) on the coagulation cascade of the host. Anticoagulant and inhibition assays respectively showed that DiES partially alter the coagulation cascade of the host and reduce the activity of the coagulation factor Xa, a key enzyme in the coagulation process. In addition, a D. immitis protein was identified by its similarity to the homologous serpin 6 from Brugia malayi as a possible candidate to form an inhibitory complex with FXa by sodium dodecyl sulfate polyacrylamide gel electrophoresis and mass spectrometry. These results indicate that D. immitis could use the anticoagulant properties of its excretory/secretory antigens to control the formation of blood clots in its immediate intravascular habitat as a survival mechanism.
    Matched MeSH terms: Anticoagulants/chemistry
  5. Saadi S, Saari N, Anwar F, Abdul Hamid A, Ghazali HM
    Biotechnol Adv, 2014 12 12;33(1):80-116.
    PMID: 25499177 DOI: 10.1016/j.biotechadv.2014.12.003
    The growing momentum of several common life-style diseases such as myocardial infarction, cardiovascular disorders, stroke, hypertension, diabetes, and atherosclerosis has become a serious global concern. Recent developments in the field of proteomics offering promising solutions to solving such health problems stimulates the uses of biopeptides as one of the therapeutic agents to alleviate disease-related risk factors. Functional peptides are typically produced from protein via enzymatic hydrolysis under in vitro or in vivo conditions using different kinds of proteolytic enzymes. An array of biological activities, including antioxidative, antihypertensive, antidiabetic and immunomodulating has been ascribed to different types of biopeptides derived from various food sources. In fact, biopeptides are nutritionally and functionally important for regulating some physiological functions in the body; however, these are yet to be extensively addressed with regard to their production through advance strategies, mechanisms of action and multiple biological functionalities. This review mainly focuses on recent biotechnological advances that are being made in the field of production in addition to covering the mode of action and biological activities, medicinal health functions and therapeutic applications of biopeptides. State-of-the-art strategies that can ameliorate the efficacy, bioavailability, and functionality of biopeptides along with their future prospects are likewise discussed.
    Matched MeSH terms: Anticoagulants/chemistry
  6. Li XP, Lin D, Zhang Y, Chen SQ, Bai HQ, Zhang SN, et al.
    Trop Biomed, 2020 Mar 01;37(1):116-126.
    PMID: 33612723
    Several bioactive molecules isolated from the saliva of blood-sucking arthropods, such as mosquitoes, have been shown to exhibit potential anticoagulant function. We have previously identified a 30kDa allergen named Aegyptin-like protein (alALP), which is highly homologous to Aegyptin, from the salivary glands of female Aedes albopictus (Asian tiger mosquito). In this study, we identified the conserved functional domain of alALP by using bioinformatic tools, and expressed the His-tagged alALP recombinant protein in sf9 insect cells by generation and transfection of a baculoviral expression plasmid carrying the fulllength cDNA of alALP. We purified this recombinant protein and examined its function on the inhibition of blood coagulation. The results showed that the purified His-alALP prolonged the Activated Partial Thromboplastin Time (APTT), Prothrombin Time (PT) and Thrombin Time (TT) in vitro as well as the Bleeding Time (BT) in vivo, which suggest that alALP could be a novel anticoagulant.
    Matched MeSH terms: Anticoagulants/chemistry*
  7. Ren X, Evangelista-Leite D, Wu T, Rajab TK, Moser PT, Kitano K, et al.
    Biomaterials, 2018 11;182:127-134.
    PMID: 30118980 DOI: 10.1016/j.biomaterials.2018.08.012
    Decellularized native extracellular matrix (ECM) biomaterials are widely used in tissue engineering and have reached clinical application as biomesh implants. To enhance their regenerative properties and postimplantation performance, ECM biomaterials could be functionalized via immobilization of bioactive molecules. To facilitate ECM functionalization, we developed a metabolic glycan labeling approach using physiologic pathways to covalently incorporate click-reactive azide ligands into the native ECM of a wide variety of rodent tissues and organs in vivo, and into the ECM of isolated rodent and porcine lungs cultured ex vivo. The incorporated azides within the ECM were preserved after decellularization and served as chemoselective ligands for subsequent bioconjugation via click chemistry. As proof of principle, we generated alkyne-modified heparin, immobilized it onto azide-incorporated acellular lungs, and demonstrated its bioactivity by Antithrombin III immobilization and Factor Xa inhibition. The herein reported metabolic glycan labeling approach represents a novel platform technology for manufacturing click-reactive native ECM biomaterials, thereby enabling efficient and chemoselective functionalization of these materials to facilitate tissue regeneration and repair.
    Matched MeSH terms: Anticoagulants/chemistry*
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links