OBJECTIVE: The purpose of this report was to describe the prespecified long-term safety objective of Micra at 12 months and electrical performance through 24 months.
METHODS: The Micra Transcatheter Pacing Study was a prospective single-arm study designed to assess the safety and efficacy of the Micra VVIR leadless/intracardiac pacemaker. Enrolled patients met class I or II guideline recommendations for de novo ventricular pacing. The long-term safety objective was freedom from a system- or procedure-related major complication at 12 months. A predefined historical control group of 2667 patients with transvenous pacemakers was used to compare major complication rates.
RESULTS: The long-term safety objective was achieved with a freedom from major complication rate of 96.0% at 12 months (95% confidence interval 94.2%-97.2%; P < .0001 vs performance goal). The risk of major complications for patients with Micra (N = 726) was 48% lower than that for patients with transvenous systems through 12 months postimplant (hazard ratio 0.52; 95% confidence interval 0.35-0.77; P = .001). Across subgroups of age, sex, and comorbidities, Micra reduced the risk of major complications compared to transvenous systems. Electrical performance was excellent through 24 months, with a projected battery longevity of 12.1 years.
CONCLUSION: Long-term performance of the Micra transcatheter pacemaker remains consistent with previously reported data. Few patients experienced major complications through 12 months of follow-up, and all patient subgroups benefited as compared to transvenous pacemaker historical control group.
OBJECTIVE: The purpose of this study was to report the worldwide experience with successful retrieval of the Micra TPS.
METHODS: A list of all successful retrievals of the currently available leadless pacemakers (LPs) was obtained from the manufacturer of Micra TPS. Pertinent details of retrieval, such as indication, days postimplantation, equipment used, complications, and postretrieval management, were obtained from the database collected by the manufacturer. Other procedural details were obtained directly from the operators at each participating site.
RESULTS: Data from the manufacturer consisted of 40 successful retrievals of the Micra TPS. Operators for 29 retrievals (73%) provided the consent and procedural details. Of the 29 retrievals, 11 patients underwent retrieval during the initial procedure (immediate retrieval); the other 18 patients underwent retrieval during a separate procedure (delayed retrieval). Median duration before delayed retrieval was 46 days (range 1-95 days). The most common reason for immediate retrieval was elevated pacing threshold after tether removal. The most common reasons for delayed retrieval included elevated pacing threshold at follow-up, endovascular infection, and need for transvenous device. Mean procedure duration was 63.11 ± 56 minutes. All retrievals involved snaring via a Micra TPS delivery catheter or steerable sheath. No serious complications occurred during the reported retrievals.
CONCLUSION: Early retrieval of the Micra TPS is feasible and safe.
OBJECTIVE: The purpose of this study was to evaluate the system's performance during treadmill tests to maximum exertion in a subset of patients within the Micra Transcatheter Pacing Study.
METHODS: Patients underwent treadmill testing at 3 or 6 months postimplant with algorithm programming at physician discretion. Normalized sensor rate (SenR) relative to the programmed upper sensor rate was modeled as a function of normalized workload in metabolic equivalents (METS) relative to maximum METS achieved during the test. A normalized METS and SenR were determined at the end of each 1-minute treadmill stage. The proportionality of SenR to workload was evaluated by comparing the slope from this relationship to the prospectively defined tolerance margin (0.65-1.35).
RESULTS: A total of 69 treadmill tests were attempted by 42 patients at 3 and 6 months postimplant. Thirty tests from 20 patients who completed ≥4 stages with an average slope of 0.86 (90% confidence interval 0.77-0.96) confirmed proportionality to workload. On an individual test basis, 25 of 30 point estimates (83.3%) had a normalized slope within the defined tolerance range (range 0.46-1.08).
CONCLUSION: Accelerometer-based rate adaptive pacing was proportional to workload, thus confirming rate adaptive pacing commensurate to workload is achievable with an entirely intracardiac pacing system.