Displaying all 4 publications

Abstract:
Sort:
  1. Azrizal-Wahid N, Sofian-Azirun M, Low VL
    PMID: 33609991 DOI: 10.1016/j.cimid.2021.101621
    Flea-borne pathogens were screened from 100 individual cat fleas using a PCR approach, of which 38 % were infected with at least one bacterium. Overall, 28 % of the flea samples were positive for Bartonella as inferred from ITS DNA region. Of these, 25 % (7/28) were identified as Bartonella clarridgeiae, 42.9 % (12/28) as Bartonella henselae consisted of two different strains, and 32.1 % (9/28) as Bartonella koehlerae, which was detected for the first time in Malaysia. Sequencing of gltA amplicons detected Rickettsia DNA in 14 % of cat flea samples, all of them identified as Rickettsia asembonensis (100 %). None of the flea samples were positive for Mycoplasma DNA in 16S rRNA gene detection. Four fleas were co-infected with Bartonella and Rickettsia DNAs. Statistical analyses reveal no significant association between bacterial infection and mtDNA diversity of the cat flea. Nevertheless, in all types of pathogen infections, infected populations demonstrated lower nucleotide and haplotype diversities compared to uninfected populations. Moreover, lower haplotype numbers were observed in infected populations.
    Matched MeSH terms: Bartonella/classification
  2. Tay ST, Mokhtar AS, Zain SN, Low KC
    Am J Trop Med Hyg, 2014 Jun;90(6):1039-42.
    PMID: 24732465 DOI: 10.4269/ajtmh.13-0273
    This study describes our investigation on the prevalence and molecular identification of bartonellae from Rattus diardii and R. norvegicus in the urban areas of Malaysia. Of 95 rats investigated, Bartonella tribocorum, B. rattimassiliensis, B. coopersplainsensis, B. elizabethae, and B. queenslandensis were isolated from kidney and spleen homogenates of four rats. Bartonellae DNA was amplified from the rat organ tissues by using primers specific for the bartonellae RNA polymerase beta subunit (rpoB) gene in nine other rats. Sequence analysis of the rpoB gene fragments shows the identification of B. queenslandensis in five rats, B. elizabethae in three rats, and B. tribocorum in one rat. Combining the results of isolation and molecular detection of bartonellae, we found that the prevalence of Bartonella infection in the Rattus spp. investigated in this study was 13.7%. Implementation of effective rat control program in the urban areas is necessary to prevent the spillover of bartonellosis from rats to humans.
    Matched MeSH terms: Bartonella/classification
  3. Kho KL, Koh FX, Jaafar T, Nizam QN, Tay ST
    BMC Vet Res, 2015;11:153.
    PMID: 26179499 DOI: 10.1186/s12917-015-0470-1
    Bartonellosis is an emerging zoonotic infection responsible for a variety of clinical syndromes in humans and animals. Members of the genus Bartonella exhibit high degrees of genetic diversity and ecologic plasticity. The infection is usually transmitted to animals and humans through blood-feeding arthropod vectors such as fleas, lice, ticks and sandflies. This study was conducted to investigate the prevalence of Bartonella species in 184 beef cattle, 40 dairy cattle, 40 sheep and 40 goats in eight animal farms across Peninsular Malaysia. Bartonella-specific PCR assays and sequence analysis of partial fragments of the citrate synthase gene were used for detection and identification of B. bovis. Isolation of B. bovis was attempted from PCR-positive blood samples. Molecular heterogeneity of the isolates was investigated based on sequence analysis of gltA, ITS, rpoB genes, ERIC-PCR, as well as using an established multilocus sequence typing (MLST) method. The carriage rate of B. bovis in ticks was also determined in this study.
    Matched MeSH terms: Bartonella/classification
  4. Nguyen VL, Colella V, Greco G, Fang F, Nurcahyo W, Hadi UK, et al.
    Parasit Vectors, 2020 Aug 15;13(1):420.
    PMID: 32799914 DOI: 10.1186/s13071-020-04288-8
    BACKGROUND: Ticks and fleas are considered amongst the most important arthropod vectors of medical and veterinary concern due to their ability to transmit pathogens to a range of animal species including dogs, cats and humans. By sharing a common environment with humans, companion animal-associated parasitic arthropods may potentially transmit zoonotic vector-borne pathogens (VBPs). This study aimed to molecularly detect pathogens from ticks and fleas from companion dogs and cats in East and Southeast Asia.

    METHODS: A total of 392 ticks and 248 fleas were collected from 401 infested animals (i.e. 271 dogs and 130 cats) from China, Taiwan, Indonesia, Malaysia, Singapore, Thailand, the Philippines and Vietnam, and molecularly screened for the presence of pathogens. Ticks were tested for Rickettsia spp., Anaplasma spp., Ehrlichia spp., Babesia spp. and Hepatozoon spp. while fleas were screened for the presence of Rickettsia spp. and Bartonella spp.

    RESULT: Of the 392 ticks tested, 37 (9.4%) scored positive for at least one pathogen with Hepatozoon canis being the most prevalent (5.4%), followed by Ehrlichia canis (1.8%), Babesia vogeli (1%), Anaplasma platys (0.8%) and Rickettsia spp. (1%) [including Rickettsia sp. (0.5%), Rickettsia asembonensis (0.3%) and Rickettsia felis (0.3%)]. Out of 248 fleas tested, 106 (42.7%) were harboring at least one pathogen with R. felis being the most common (19.4%), followed by Bartonella spp. (16.5%), Rickettsia asembonensis (10.9%) and "Candidatus Rickettsia senegalensis" (0.4%). Furthermore, 35 Rhipicephalus sanguineus ticks were subjected to phylogenetic analysis, of which 34 ticks belonged to the tropical and only one belonged to the temperate lineage (Rh. sanguineus (sensu stricto)).

    CONCLUSION: Our data reveals the circulation of different VBPs in ticks and fleas of dogs and cats from Asia, including zoonotic agents, which may represent a potential risk to animal and human health.

    Matched MeSH terms: Bartonella/classification
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links