Displaying all 6 publications

Abstract:
Sort:
  1. Awaluddin SA, Thiruvenkadam S, Izhar S, Hiroyuki Y, Danquah MK, Harun R
    Biomed Res Int, 2016;2016:5816974.
    PMID: 27366748 DOI: 10.1155/2016/5816974
    Subcritical water extraction (SWE) technology has been used for the extraction of active compounds from different biomass materials with low process cost, mild operating conditions, short process times, and environmental sustainability. With the limited application of the technology to microalgal biomass, this work investigates parametrically the potential of subcritical water for high-yield extraction of biochemicals such as carbohydrates and proteins from microalgal biomass. The SWE process was optimized using central composite design (CCD) under varying process conditions of temperature (180-374°C), extraction time (1-20 min), biomass particulate size (38-250 μm), and microalgal biomass loading (5-40 wt.%). Chlorella vulgaris used in this study shows high volatile matter (83.5 wt.%) and carbon content (47.11 wt.%), giving advantage as a feedstock for biofuel production. The results showed maximum total carbohydrate content and protein yields of 14.2 g/100 g and 31.2 g/100 g, respectively, achieved under the process conditions of 277°C, 5% of microalgal biomass loading, and 5 min extraction time. Statistical analysis revealed that, of all the parameters investigated, temperature is the most critical during SWE of microalgal biomass for protein and carbohydrate production.
    Matched MeSH terms: Carbohydrates/biosynthesis
  2. Tye YY, Lee KT, Abdullah WN, Leh CP
    Bioresour Technol, 2013 Jul;140:10-14.
    PMID: 23672935 DOI: 10.1016/j.biortech.2013.04.069
    Various pretreatments on Ceiba pentandra (L.) Gaertn. (kapok) fiber prior to enzymatic hydrolysis for sugar production were optimized in this study. The optimum conditions for water, acid, and alkaline pretreatments were 170°C for 45 min, 120°C for 45 min in 1.0% (v/v) H2SO4 solution and 120°C for 60 min in 2.0% (v/v) NaOH solution, respectively. Among the three pretreatments, the alkaline pretreatment achieved the highest total glucose yield (glucose yield calculated based on the untreated fiber) (38.5%), followed by the water (35.0%) and acid (32.8%) pretreatments. As a result, the relative effectiveness of the pretreatment methods for kapok fiber was verified as alkali>water>acid at the condition stated.
    Matched MeSH terms: Carbohydrates/biosynthesis*
  3. Ibrahim MF, Razak MN, Phang LY, Hassan MA, Abd-Aziz S
    Appl Biochem Biotechnol, 2013 Jul;170(6):1320-35.
    PMID: 23666614 DOI: 10.1007/s12010-013-0275-2
    Cellulase is an enzyme that converts the polymer structure of polysaccharides into fermentable sugars. The high market demand for this enzyme together with the variety of applications in the industry has brought the research on cellulase into focus. In this study, crude cellulase was produced from oil palm empty fruit bunch (OPEFB) pretreated with 2% NaOH with autoclave, which was composed of 59.7% cellulose, 21.6% hemicellulose, and 12.3% lignin using Trichoderma asperellum UPM1 and Aspergillus fumigatus UPM2. Approximately 0.8 U/ml of FPase, 24.7 U/ml of CMCase and 5.0 U/ml of β-glucosidase were produced by T. asperellum UPM1 at a temperature of 35 °C and at an initial pH of 7.0. A 1.7 U/ml of FPase, 24.2 U/ml of CMCase, and 1.1 U/ml of β-glucosidase were produced by A. fumigatus UPM2 at a temperature of 45 °C and at initial pH of 6.0. The crude cellulase was best produced at 1% of substrate concentration for both T. asperellum UPM1 and A. fumigatus UPM2. The hydrolysis percentage of pretreated OPEFB using 5% of crude cellulase concentration from T. asperellum UPM1 and A. fumigatus UPM2 were 3.33% and 19.11%, with the reducing sugars concentration of 1.47 and 8.63 g/l, respectively.
    Matched MeSH terms: Carbohydrates/biosynthesis*
  4. Tye YY, Lee KT, Wan Abdullah WN, Leh CP
    Bioresour Technol, 2012 Jul;116:536-9.
    PMID: 22595099 DOI: 10.1016/j.biortech.2012.04.025
    The importance of bioethanol currently has increased tremendously as it can reduce the total dependency on fossil-fuels, especially gasoline, in the transportation sector. In this study, Ceiba pentandra (kapok fiber) was introduced as a new resource for bioethanol production. The results of chemical composition analysis showed that the cellulose (alpha- and beta-) contents were 50.7%. The glucose composition of the fiber was 59.8%. The high glucose content indicated that kapok fiber is a potential substrate for bioethanol production. However, without a pretreatment, the kapok fiber only yielded 0.8% of reducing sugar by enzymatic hydrolysis. Thus, it is necessary to pre-treat the kapok fiber prior to hydrolysis. Taking into account environmentally friendliness, only simple pretreatments with minimum chemical or energy consumption was considered. It was interesting to see that by adopting merely water, acid and alkaline pretreatments, the yield of reducing sugar was increased to 39.1%, 85.2% and >100%, respectively.
    Matched MeSH terms: Carbohydrates/biosynthesis*
  5. Hafid HS, Rahman NA, Md Shah UK, Baharudin AS
    J Environ Manage, 2015 Jun 1;156:290-8.
    PMID: 25900092 DOI: 10.1016/j.jenvman.2015.03.045
    The kitchen waste fraction in municipal solid waste contains high organic matter particularly carbohydrate that can contribute to fermentable sugar production for subsequent conversion to bioethanol. This study was carried out to evaluate the influence of single and combination pretreatments of kitchen waste by liquid hot water, mild acid pretreatment of hydrochloric acid (HCl) and sulphuric acid (H2SO4) and enzymatic hydrolysis (glucoamylase). The maximum total fermentable sugar produced after combination pretreatment by 1.5% HCl and glucoamylase consisted of 93.25 g/L glucose, 0.542 g/L sucrose, 0.348 g/L maltose, and 0.321 g/L fructose. The glucose released by the combination pretreatment method was 0.79 g glucose/g KW equivalent to 79% of glucose conversion. The effects of the pre-treatment on kitchen waste indicated that the highest solubilization was 40% by the combination method of 1.5% HCl and glucoamylase. The best combination pre-treatment gave concentrations of lactic acid, acetic acid, and propionic acid of 11.74 g/L, 6.77 g/L, and 1.02 g/L, respectively. The decrease of aliphatic absorbance bands of polysaccharides at 2851 and 2923 cm(-1) and the increase on structures of carbonyl absorbance bands at 1600 cm(-1) reflects the progress of the kitchen waste hydrolysis to fermentable sugars. Overall, 1.5% HCl and glucoamylase treatment was the most profitable process as the minimum selling price of glucose was USD 0.101/g kitchen waste. Therefore, the combination pretreatment method was proposed to enhance the production of fermentable sugar, particularly glucose from kitchen waste as the feedstock for bioethanol production.
    Matched MeSH terms: Carbohydrates/biosynthesis*
  6. Fan SP, Jiang LQ, Chia CH, Fang Z, Zakaria S, Chee KL
    Bioresour Technol, 2014 Feb;153:69-78.
    PMID: 24342947 DOI: 10.1016/j.biortech.2013.11.055
    Recent years, great interest has been devoted to the conversion of biomass-derived carbohydrate into sugars, such as glucose, mannose and fructose. These are important versatile intermediate products that are easily processed into high value-added biofuels. In this work, microwave-assisted dilute sulfuric acid hydrolysis of deproteinated palm kernel cake (DPKC) was systematically studied using Response Surface Methodology. The highest mannose yield (92.11%) was achieved at the optimized condition of 148°C, 0.75N H2SO4, 10min 31s and substrate to solvent (SS) ratio (w/v) of 1:49.69. Besides that, total fermentable sugars yield (77.11%), was obtained at 170°C, 0.181N H2SO4, 6min 6s and SS ratio (w/v) of 1:40. Ridge analysis was employed to further verify the optimum conditions. Thus, this work provides fundamental data of the practical use of DPKC as low cost, high yield and environmental-friendly material for the production of mannose and other sugars.
    Matched MeSH terms: Carbohydrates/biosynthesis*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links