Displaying all 6 publications

Abstract:
Sort:
  1. Suhaimi FW, Hassan Z, Mansor SM, Müller CP
    Neurosci Lett, 2021 02 06;745:135632.
    PMID: 33444671 DOI: 10.1016/j.neulet.2021.135632
    Mitragynine is the main alkaloid isolated from the leaves of Mitragyna speciosa Korth (Kratom). Kratom has been widely used to relieve pain and opioid withdrawal symptoms in humans but may also cause memory deficits. Here we investigated the changes in brain electroencephalogram (EEG) activity after acute and chronic exposure to mitragynine in freely moving rats. Vehicle, morphine (5 mg/kg) or mitragynine (1, 5 and 10 mg/kg) were administered for 28 days, and EEG activity was repeatedly recorded from the frontal cortex, neocortex and hippocampus. Repeated exposure to mitragynine increased delta, but decreased alpha powers in both cortical regions. It further decreased delta power in the hippocampus. These findings suggest that acute and chronic mitragynine can have profound effects on EEG activity, which may underlie effects on behavioral activity and cognition, particularly learning and memory function.
    Matched MeSH terms: Cerebral Cortex/drug effects*
  2. Tan YY, Wade JD, Tregear GW, Summers RJ
    Br J Pharmacol, 1999 May;127(1):91-8.
    PMID: 10369460
    The binding characteristics of the relaxin receptor in rat atria, uterus and cortex were studied using a [33P]-labelled human gene 2 relaxin (B33) and quantitative receptor autoradiography. The binding kinetics of [33P]-human gene 2 relaxin (B33) were investigated in slide-mounted rat atrial sections. The binding achieved equilibrium after 60 min incubation at room temperature (23+/-1 degrees C) and dissociated slowly. The association and dissociation rate constants were 4.31+/-0.34x10(8) M(-1) x min(-1) and 1.55+/-0.38x10(-3) min(-1) respectively. Thus, the kinetic dissociation constant was 3.46+/-0.59 pM. Binding was saturable to a single population of non-interacting sites throughout atria, in uterine myometrium and the 5th layer of cerebral cortex. The binding affinities (pK(D)) of [33P]-human gene 2 relaxin (B33) were 8.92+/-0.09 in atrial myocardium and 8.79+/-0.04 in cerebral cortex of male rats, and 8.79+/-0.10 in uterine myometrium. Receptor densities in the cerebral cortex and atria were higher than in uterine myometrium, indicating that relaxin also has important roles in non-reproductive tissues. In male rats, treatment with 17beta-oestradiol (20 microg in 0.1 ml sesame oil s.c., 18-24 h) significantly decreased the density of relaxin receptors in atria and cerebral cortex. Identical treatment in female rats had no significant effect in atria and cerebral cortex, but it significantly increased the density of relaxin receptors in uterine myometrium. Relaxin binding was competitively displaced by porcine and rat native relaxins. Porcine native relaxin binds to the relaxin receptor in male rat atria (8.90+/-0.02), and cerebral cortex (8.90+/-0.03) and uterine myometrium (8.89+/-0.03) with affinities not significantly different from human gene 2 (B33) relaxin. Nevertheless, rat relaxin binds to the receptors with affinities (8.35+/-0.09 in atria, 8.22+/-0.07 in cerebral cortex and 8.48+/-0.06 in uterine myometrium) significantly less than human gene 2 (B33) and porcine relaxins. Quantitative receptor autoradiography is the method of choice for measurement of affinities and densities of relaxin receptor in atria, uterine myometrium and cerebral cortex. High densities were found in all these tissues. 17beta-oestradiol treatment produced complex effects where it increased the densities of relaxin receptors in uterus but decreased those in atria and cerebral cortex of the male rats, and had no effect on the atria and cerebral cortex of the female rats.
    Matched MeSH terms: Cerebral Cortex/drug effects
  3. Mohd Sairazi NS, K N S S, Asari MA, Mummedy S, Muzaimi M, Sulaiman SA
    BMC Complement Altern Med, 2017 Jan 09;17(1):31.
    PMID: 28068984 DOI: 10.1186/s12906-016-1534-x
    Administration of KA on rodents has resulted in seizures, behavioral changes, oxidative stress, and neuronal degeneration on selective population of neurons in the brain. The present study was undertaken to investigate the extent of neuroprotective effect conferred by Malaysian Tualang Honey (TH), an antioxidant agent, in the cerebral cortex of rats against KA-induced oxidative stress and neurodegeneration in an animal model of KA-induced excitotoxicity.
    Matched MeSH terms: Cerebral Cortex/drug effects
  4. Tyagi RK, Bisht R, Pant J, Kumar P, Majeed AB, Prakash A
    Exp. Toxicol. Pathol., 2015 Feb;67(2):211-7.
    PMID: 25547370 DOI: 10.1016/j.etp.2014.12.001
    Accumulating evidence strongly suggests that gamma amino butyric acid (GABA) receptors play a crucial role in the pathogenesis of Parkinson's disease (PD). Therefore, the present study was designed to investigate the role of GABA-B receptor modulation in experimental models of MPTP-induced PD. MPTP was administered repeatedly on 1st, 7th and 14th day intranigrally for the induction of PD in Male Wistar rats. Baclofen (10 and 20mg/kg) and GABA-B antagonist CGP35348 (10mg/kg) were given after induction of PD for 14 days. Different behavioural tasks were performed during 1st, 14th, 21st, 28th days after MPTP injection and biochemical parameters were estimated on day 28th. Central administration of MPTP showed significant impairment of motor behaviour and marked increase of oxidative damage LPO and GSH in striatum and cortex. Pro-inflammatory cytokines like TNF-α and IL-β were significantly increased in striatum region of MPTP treated rats. However, post treatment with baclofen significantly improved the motor abnormalities and attenuated the oxidative damage and neuro-inflammation in MPTP treated rats. CGP35348, GABA-B receptor antagonist, reversed the protective effect of baclofen GABA-B receptor play role in the neuroprotection. The present study concluded that baclofen produce beneficial effect against MPTP induced PD like symptoms rats through GABAergic mechanism.
    Matched MeSH terms: Cerebral Cortex/drug effects*
  5. Swamy M, Yusof WR, Sirajudeen KN, Mustapha Z, Govindasamy C
    J Physiol Biochem, 2011 Mar;67(1):105-13.
    PMID: 20960085 DOI: 10.1007/s13105-010-0054-2
    To understand their role in epilepsy, the nitric oxide synthetase (NOS), argininosuccinate synthetase (AS), argininosuccinate lyase (AL), glutamine synthetase (GS), and arginase activities, along with the concentration of nitrate/nitrite (NOx), thiobarbituric acid reactive substances (TBARS), and total antioxidant status (TAS), were estimated in different regions of brain in rats subjected to experimental epilepsy induced by subcutaneous administration of kainic acid (KA). The short-term (acute) group animals were killed after 2 h and the long term (chronic) group animals were killed after 5 days of single injection of KA (15 mg/kg body weight). After decapitation of rats, the brain regions were separated and in their homogenates, the concentration of NOx, TBARS and TAS and the activities of NOS, AS, AL, arginase and glutamine synthetase were assayed by colorimetric methods. The results of the study demonstrated the increased activity of NOS and formation of NO in acute and chronic groups epilepsy. The activities of AS and AL were increased and indicate the effective recycling of citrulline to arginine. The activity of glutamine synthetase was decreased in acute and chronic groups of epilepsy compared to control group and indicate the modulation of its activity by NO in epilepsy. The activity of arginase was not changed in acute group; however it was decreased in chronic group and may favor increased production of NO in this condition. The concentration TBARS were increased and TAS decreased in acute and chronic groups of epilepsy and supports the oxidative stress in epilepsy.
    Matched MeSH terms: Cerebral Cortex/drug effects
  6. Fakurazi S, Rahman SA, Hidayat MT, Ithnin H, Moklas MA, Arulselvan P
    Molecules, 2013 Jan 04;18(1):666-81.
    PMID: 23292329 DOI: 10.3390/molecules18010666
    Mitragynine (MG) is the major active alkaloid found in Mitragyna speciosa Korth. In the present study, we investigated the enhancement of analgesic action of MG when combined with morphine and the effect of the combination on the development of tolerance towards morphine. Mice were administered intraperitoneally with a dose of MG (15 and 25 mg/kg b.wt) combined with morphine (5 mg/kg b.wt) respectively for 9 days. The antinociceptive effect was evaluated by a hot plate test. The protein expression of cyclic adenosine monophosphate (cAMP) and cAMP response element binding (CREB) was analyzed by immunoblot. Toxicological parameters especially liver and kidney function tests were assessed after the combination treatment with MG and morphine. The concurrent administration of MG and morphine showed significant (p < 0.05) increase in latency time when compared to morphine alone group and the outstanding analgesic effects in the combination regimens were maintained until day 9. For the protein expression, there was a significant increment of cAMP and CREB levels (p < 0.05) in group treated with 5 mg/kg morphine but there was no significant change of these protein expressions when MG was combined with morphine. There was a significant changes in toxicological parameters of various treated groups. The combination treatment of MG and morphine effectively reduce the tolerance due to the chronic administration of morphine.
    Matched MeSH terms: Cerebral Cortex/drug effects
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links