Displaying all 9 publications

Abstract:
Sort:
  1. Sundram K, Khor HT, Ong AS
    Lipids, 1990 Apr;25(4):187-93.
    PMID: 2345491
    Male Sprague Dawley rats were fed semipurified diets containing 20% fat for 15 weeks. The dietary fats were corn oil, soybean oil, palm oil, palm olein and palm stearin. No differences in the body and organ weights of rats fed the various diets were evident. Plasma cholesterol levels of rats fed soybean oil were significantly lower than those of rats fed corn oil, palm oil, palm olein or palm stearin. Significant differences between the plasma cholesterol content of rats fed corn oil and rats fed the three palm oils were not evident. HDL cholesterol was raised in rats fed the three palm oil diets compared to the rats fed either corn oil or soybean oil. The cholesterol-phospholipid molar ratio of rat platelets was not influenced by the dietary fat type. The formation of 6-keto-PGF1 alpha was significantly enhanced in palm oil-fed rats compared to all other dietary treatments. Fatty acid compositional changes in the plasma cholesterol esters and plasma triglycerides were diet regulated with significant differences between rats fed the polyunsaturated corn and soybean oil compared to the three palm oils.
    Matched MeSH terms: Dietary Fats, Unsaturated/pharmacology*
  2. Ng WK, Campbell PJ, Dick JR, Bell JG
    Lipids, 2003 Oct;38(10):1031-8.
    PMID: 14669967
    An experiment was conducted to evaluate the interactive effects of dietary crude palm oil (CPO) concentration and water temperature on lipid and FA digestibility in rainbow trout. Four isolipidic diets with 0, 5, 10, or 20% (w/w) CPO, at the expense of fish oil, were formulated and fed to groups of trout maintained at water temperatures of 7, 10, or 15 degrees C. The apparent digestibility (AD) of the FA, measured using yttrium oxide as an inert marker, decreased with increasing chain length and increased with increasing unsaturation within each temperature regimen irrespective of CPO level fed to the fish. PUFA of the n-3 series were preferentially absorbed compared to n-6 PUFA in all diet and temperature treatments. Except for a few minor FA, a significant (P < 0.05) interaction between diet and temperature effects on FA digestibility was found. Increasing dietary levels of CPO lead to significant reductions in the AD of saturates and, to a lesser extent, also of the other FA. Lowering water temperature reduced total saturated FA digestibility in trout regardless of CPO level. Based on the lipid class composition of trout feces, this reduction in AD of saturates was due in part to the increasing resistance of dietary TAG to digestion. Increasing CPO level and decreasing water temperature significantly increased TAG content in trout fecal lipids, with saturates constituting more than 60% of the FA composition. Total monoene and PUFA digestibilities were not significantly affected by water temperature in fish fed up to 10% CPO in their diet. The potential impact of reduced lipid and FA digestibility in cold-water fish fed diets supplemented with high levels of CPO on fish growth performance requires further research.
    Matched MeSH terms: Dietary Fats, Unsaturated/pharmacology*
  3. Adam SK, Das S, Othman F, Jaarin K
    Clinics (Sao Paulo), 2009;64(11):1113-9.
    PMID: 19936186 DOI: 10.1590/S1807-59322009001100012
    To observe the effects of consuming repeatedly heated soy oil on the aortic tissues of estrogen-deficient rats.
    Matched MeSH terms: Dietary Fats, Unsaturated/pharmacology
  4. Ebrahimi M, Rajion MA, Goh YM, Sazili AQ, Schonewille JT
    Biomed Res Int, 2013;2013:194625.
    PMID: 23484090 DOI: 10.1155/2013/194625
    This study was conducted to determine the effects of feeding oil palm frond silage based diets with added linseed oil (LO) containing high α -linolenic acid (C18:3n-3), namely, high LO (HLO), low LO (LLO), and without LO as the control group (CON) on the fatty acid (FA) composition of subcutaneous adipose tissue and the gene expression of peroxisome proliferator-activated receptor (PPAR) α , PPAR- γ , and stearoyl-CoA desaturase (SCD) in Boer goats. The proportion of C18:3n-3 in subcutaneous adipose tissue was increased (P < 0.01) by increasing the LO in the diet, suggesting that the FA from HLO might have escaped ruminal biohydrogenation. Animals fed HLO diets had lower proportions of C18:1 trans-11, C18:2n-6, CLA cis-9 trans-11, and C20:4n-6 and higher proportions of C18:3n-3, C22:5n-3, and C22:6n-3 in the subcutaneous adipose tissue than animals fed the CON diets, resulting in a decreased n-6:n-3 fatty acid ratio (FAR) in the tissue. In addition, feeding the HLO diet upregulated the expression of PPAR- γ (P < 0.05) but downregulated the expression of SCD (P < 0.05) in the adipose tissue. The results of the present study show that LO can be safely incorporated in the diets of goats to enrich goat meat with potential health beneficial FA (i.e., n-3 FA).
    Matched MeSH terms: Dietary Fats, Unsaturated/pharmacology*
  5. Yap SC, Choo YM, Hew NF, Yap SF, Khor HT, Ong AS, et al.
    Lipids, 1995 Dec;30(12):1145-50.
    PMID: 8614305
    The oxidative susceptibilities of low density lipoproteins (LDL) isolated from rabbits fed high-fat atherogenic diets containing coconut, palm, or soybean oil were investigated. New Zealand white rabbits were fed atherogenic semisynthetic diets containing 0.5% cholesterol and either (i) 13% coconut oil and 2% corn oil (CNO), (ii) 15% refined, bleached, and deodorized palm olein (RBDPO), (iii) 15% crude palm olein (CPO), (iv) 15% soybean oil (SO), or (v) 15% refined, bleached, and deodorized palm olein without cholesterol supplementation [RBDPO(wc)], for a period of twelve weeks. Total fatty acid compositions of the plasma and LDL were found to be modulated (but not too drastically) by the nature of the dietary fats. Cholesterol supplementation significantly increased the plasma level of vitamin E and effectively altered the plasma composition of long-chain fatty acids in favor of increasing oleic acid. Oxidative susceptibilities of LDL samples were determined by Cu2(+)-catalyzed oxidation which provide the lag times and lag-phase slopes. The plasma LDL from all palm oil diets [RBDPO, CPO, and RBDPO(wc)] were shown to be equally resistant to the oxidation, and the LDL from SO-fed rabbits were most susceptible, followed by the LDL from the CNO-fed rabbits. These results reflect a relationship between the oxidative susceptibility of LDL due to a combination of the levels of polyunsaturated fatty acids and vitamin E.
    Matched MeSH terms: Dietary Fats, Unsaturated/pharmacology*
  6. Voon PT, Lee ST, Ng TKW, Ng YT, Yong XS, Lee VKM, et al.
    Adv Nutr, 2019 07 01;10(4):647-659.
    PMID: 31095284 DOI: 10.1093/advances/nmy122
    It is not clear whether a saturated fatty acid-rich palm olein diet has any significant adverse effect on established surrogate lipid markers of cardiovascular disease (CVD) risk. We reviewed the effect of palm olein with other oils on serum lipid in healthy adults. We searched in MEDLINE and CENTRAL: Central Register of Controlled Trials from 1975 to January 2018 for randomized controlled trials of ≥2 wk intervention that compared the effects of palm olein (the liquid fraction of palm oil) with other oils such as coconut oil, lard, canola oil, high-oleic sunflower oil, olive oil, peanut oil, and soybean oil on changes in serum lipids. Nine studies were eligible and were included, with a total of 533 and 542 subjects on palm olein and other dietary oil diets, respectively. We extracted and compared all the data for serum lipids, such as total cholesterol (TC), LDL cholesterol, HDL cholesterol, triglyceride, and TC/HDL cholesterol ratio. When comparing palm olein with other dietary oils, the overall weighted mean differences for TC, LDL cholesterol, HDL cholesterol, triglycerides, and the TC/HDL cholesterol ratio were -0.10 (95% CI: -0.30, 0.10; P = 0.34), -0.06 (95% CI: -0.29,0.16; P = 0.59), 0.02 (95% CI: -0.01, 0.04; P = 0.20), 0.01 (95% CI: -0.05, 0.06; P = 0.85), and -0.15 (95% CI: -0.43, 0.14; P = 0.32), respectively. Overall, there are no significant differences in the effects of palm olein intake on lipoprotein biomarkers (P > 0.05) compared with other dietary oils. However, dietary palm olein was found to have effects comparable to those of other unsaturated dietary oils (monounsaturated fatty acid- and polyunsaturated fatty acid-rich oils) but differed from that of saturated fatty acid-rich oils with respect to the serum lipid profile in healthy adults.
    Matched MeSH terms: Dietary Fats, Unsaturated/pharmacology
  7. Leong XF, Najib MN, Das S, Mustafa MR, Jaarin K
    Tohoku J. Exp. Med., 2009 Sep;219(1):71-8.
    PMID: 19713687
    Oxidization of dietary cooking oil increases the risk of cardiovascular diseases such as hypertension by increasing the formation oxidative oxygen radicals. The aim of study was to investigate the effects of repeatedly heated palm oil on blood pressure, plasma nitrites, and vascular reactivity. Nitrites were measured, as an indirect marker for nitric oxide production. Male Sprague-Dawley rats were divided into four groups: control group fed with basal diet and other three groups fortified with 15% weight/weight fresh palm oil (FPO), palm oil heated five times (5HPO) or palm oil heated ten times (10HPO) for 24 weeks. The oil was heated to 180 degrees C for 10 min. Blood pressure was measured at baseline and at intervals of four weeks for 24 weeks using non-invasive tail-cuff method. Following 24 weeks, the rats were sacrificed and thoracic aortas were dissected for measurement of vascular reactivity. Blood pressure was elevated significantly (p < 0.05) in 5HPO and 10HPO groups, with the 10HPO group showing higher values. Aortic rings from animals fed with heated oil showed diminished relaxation in response to acetylcholine or sodium nitroprusside, and greater contraction to phenylephrine. Acetylcholine and sodium nitroprusside cause endothelium-dependent and endothelium-independent relaxation, respectively. Relaxation responses remained unaltered in the FPO group, with the attenuated contractile response to phenylephrine, compared to control group. FPO increased plasma nitrites by 28%, whereas 5HPO and 10HPO reduced them by 25% and 33%, respectively. Intake of repeatedly heated palm oil causes an increase in blood pressure, which may be accounted for by the attenuated endothelium-dependent vasorelaxant response.
    Matched MeSH terms: Dietary Fats, Unsaturated/pharmacology
  8. Nesaretnam K, Devasagayam TP, Singh BB, Basiron Y
    Biochem. Mol. Biol. Int., 1993 May;30(1):159-67.
    PMID: 8358328
    The effect of palm oil, a widely used vegetable oil, rich in tocotrienols, on peroxidation potential of rat liver was examined. Long-term feeding of rats with palm oil as one of the dietary components significantly reduced the peroxidation potential of hepatic mitochondria and microsomes. As compared to hepatic mitochondria isolated from rats fed control or corn oil-rich diet, those from palm oil-fed group showed significantly less susceptibility to peroxidation induced by ascorbate and NADPH. However, in microsomes, only NADPH-induced lipid peroxidation was significantly reduced in rats fed palm oil rich-diet. Though the accumulation of thiobarbituric acid reactive substances during ascorbate-induced lipid peroxidation in mitochondria from rats fed corn oil-rich diet supplemented with tocotrienol-rich fraction (TRF) of palm oil was similar to that of control rats, the initial rate of peroxidation was much slower than those from control or corn oil fed diets. Our in vitro studies as well as analyses of co-factors related to peroxidation potential indicated that the observed decrease in palm oil-fed rats may be due to increased amount of antioxidants in terms of tocotrienol as well as decrease in the availability of substrates for peroxidation.
    Matched MeSH terms: Dietary Fats, Unsaturated/pharmacology*
  9. Ng TK, Hayes KC, DeWitt GF, Jegathesan M, Satgunasingam N, Ong AS, et al.
    J Am Coll Nutr, 1992 Aug;11(4):383-90.
    PMID: 1506599
    To compare the effects of dietary palmitic acid (16:0) vs oleic acid (18:1) on serum lipids, lipoproteins, and plasma eicosanoids, 33 normocholesterolemic subjects (20 males, 13 females; ages 22-41 years) were challenged with a coconut oil-rich diet for 4 weeks. Subsequently they were assigned to either a palm olein-rich or olive oil-rich diet followed by a dietary crossover during two consecutive 6-week periods. Each test oil served as the sole cooking oil and contributed 23% of dietary energy or two-thirds of the total daily fat intake. Dietary myristic acid (14:0) and lauric acid (12:0) from coconut oil significantly raised all the serum lipid and lipoprotein parameters measured. Subsequent one-to-one exchange of 7% energy between 16:0 (palm olein diet) and 18:1 (olive oil diet) resulted in identical serum total cholesterol (192, 193 mg/dl), low-density lipoprotein cholesterol (LDL-C) (130, 131 mg/dl), high-density lipoprotein cholesterol (HDL-C) (41, 42 mg/dl), and triglyceride (TG) (108, 106 mg/dl) concentrations. Effects attributed to gender included higher HDL in females and higher TG in males associated with the tendency for higher LDL and LDL/HDL ratios in men. However, both sexes were equally responsive to changes in dietary fat saturation. The results indicate that in healthy, normocholesterolemic humans, dietary 16:0 can be exchanged for 18:1 within the range of these fatty acids normally present in typical diets without affecting the serum lipoprotein cholesterol concentration or distribution. In addition, replacement of 12:0 + 14:0 by 16:0 + 18:1, but especially 16:0 or some component of palm olein, appeared to have a beneficial impact on an important index of thrombogenesis, i.e., the thromboxane/prostacyclin ratio in plasma.
    Matched MeSH terms: Dietary Fats, Unsaturated/pharmacology*
Filters
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links