Displaying all 3 publications

Abstract:
Sort:
  1. Bhassu S, Bakar Y, Rashid ZA
    Genetika, 2008 Aug;44(8):1145-7.
    PMID: 18825966
    Seven single locus dinucleotide microsatellite markers were developed to characterize an economically important sport fish and food fish in Malaysia and in Southeast Asia. They were obtained by using a rapid method namely the 5' anchored PCR enrichment protocol. The specific primers were designed to flank the repeat sequences and these were subsequently used to characterize 120 unrelated fish from Malaysia and 30 fishes from Indonesia. The number of alleles per locus ranged from 2 (SYKVJ1-11) to 6 (SYKVJ1-4) while the levels of heterozygosity ranged from 0.0472 (SYKVJ1-11) to 0.7745 (SYKVJ1-2).
    Matched MeSH terms: Dinucleotide Repeats/genetics*
  2. Singh A, Priyambada P, Jabin G, Singh SK, Joshi BD, Venkatraman C, et al.
    Int J Legal Med, 2020 Sep;134(5):1613-1618.
    PMID: 32621146 DOI: 10.1007/s00414-020-02362-5
    Demand for pangolin scales in East Asia has increased dramatically in the past two decades, raising concern to the pangolin survival and bringing them to the brink of local extinction. Enumerating the number of individuals from the seized pangolin scales primarily goes undocumented, mostly due to the unavailability of the appropriate methods. In this study, we developed a Pangolin Indexing System, a multi-locus STR panel of eight dinucleotide microsatellites that showed promising results in individualization and assignment of scales into Chinese and Indian pangolins. The combined power of exclusion was 0.83 and 0.99 for Chinese and Indian pangolin. The select panel of eight polymorphic STRs exhibited the cumulative probability of identity 3.7 × 10-9 for Indian pangolin and 3.6 × 10-7 for Chinese pangolin and identified 51 unique genotypes from the 74 scales selected from the four pangolin seizures. The study demonstrated the first report of cross-species validation of STRs developed from Malayan pangolin to Indian pangolin and showed the potential application of Pangolin Indexing System in screening of large seizures through DNA profiling from the scales of Indian and Chinese pangolin.
    Matched MeSH terms: Dinucleotide Repeats*
  3. Chang W, Ee-Uli J, Ng WL, Rovie-Ryan JJ, Tan SG, Yong CSY
    Sci Rep, 2019 06 11;9(1):8504.
    PMID: 31186469 DOI: 10.1038/s41598-019-44870-4
    Macaca fascicularis, also known as the cynomolgus macaque, is an important non-human primate animal model used in biomedical research. It is an Old-World primate widely distributed in Southeast Asia and is one of the most abundant macaque species in Malaysia. However, the genetic structure of wild cynomolgus macaque populations in Malaysia has not been thoroughly elucidated. In this study, we developed genic-simple sequence repeat (genic-SSR) markers from an in-house transcriptome dataset generated from the Malaysian cynomolgus macaque via RNA sequencing, and applied these markers on 26 cynomolgus macaque individuals. A collection of 14,751 genic-SSRs were identified, where 13,709 were perfect SSRs. Dinucleotide repeats were the most common repeat motifs with a frequency of 65.05%, followed by trinucleotide repeats (20.55%). Subsequently, we designed 300 pairs of primers based on perfect di- and trinucleotide SSRs, in which 105 SSRs were associated with functional genes. A subset of 30 SSR markers were randomly selected and validated, yielding 19 polymorphic markers with an average polymorphism information content value of 0.431. The development of genic-SSR markers in this study is indeed timely to provide useful markers for functional and population genetic studies of the cynomolgus macaque and other related non-human primate species.
    Matched MeSH terms: Dinucleotide Repeats
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links