Displaying all 5 publications

Abstract:
Sort:
  1. Mohamat-Yusuff F, Zulkarnain Z, Anuar NZA, Joni AAM, Kusin FM, Mohamed KN, et al.
    Mar Pollut Bull, 2020 Dec;161(Pt A):111698.
    PMID: 33022498 DOI: 10.1016/j.marpolbul.2020.111698
    Examination of the impact of Diuron contamination on blood cockles (Tegillarca granosa) was conducted by combining field screening at three sampling events and a toxicity test. Diuron was extracted using the liquid-liquid extraction (LLE) technique and analyzed using HPLC-UV. The median lethal concentration (LC50) of Diuron on T. granosa was tested under a 72-h exposure. Diuron in water samples ranged from not detected (ND) to 3910 ppb, which was the highest concentration detected in samples after the irrigation water was discharged from the paddy plantation. Diuron was not detected in sediment samples. Mortality of T. granosa ranged from 4.74 to 38.33% with the highest percentages recorded after the release of the irrigation water. The LC50 value of Diuron was 1.84 ppm. This study suggests that irrigation water from paddy plantation that drifts to coastal areas containing Diuron harms T. granosa at the study area.
    Matched MeSH terms: Diuron/analysis; Diuron/toxicity
  2. Nomura M, Okamura H, Horie Y, Yap CK, Emmanouil C, Uwai S, et al.
    Chemosphere, 2023 Jan;312(Pt 1):137141.
    PMID: 36343734 DOI: 10.1016/j.chemosphere.2022.137141
    Seaweeds are some of the principal primary producers of marine environments, and they are important ecological elements of coastal ecosystems. The effects of harmful chemicals on seaweeds may adversely affect coastal ecosystems, hence we aimed to develop a new phytotoxicity test using the gametophytes of a common temperate kelp species, Undaria pinnatifida (KU-1630), for the widely used antifouling chemical substances Cybutryne, Diuron, Cu2+, and Zn2+. Toxicity to gametophytes of U. pinnatifida was assessed by comparing the relative growth rate (RGR) at the logarithmic growth phase. Fragmentation method, initial algal biomass, photon irradiance, and adhesive period were investigated for developing optimal test conditions. Cybutryne exposure tests were performed with seven replicates and control, the RGR ranging from 0.17 to 0.19, while mean 7-day EC50 and no observed effect concentration (NOEC) were 5.1 μg/L and 1.8 μg/L, respectively. The 7-day EC50 for other antifoulants was 14 μg/L for Diuron, 17 μg/L for Cu2+, and 1500 μg/L for Zn2+. This test method demonstrated high sensitivity and reproducibility, and it may be added to the routine methods used for toxicity evaluation of hazardous chemicals.
    Matched MeSH terms: Diuron/toxicity
  3. Ali HR, Ariffin MM, Omar TFT, Ghazali A, Sheikh MA, Shazili NAM, et al.
    Environ Sci Pollut Res Int, 2021 Oct;28(37):52247-52257.
    PMID: 34002317 DOI: 10.1007/s11356-021-14424-1
    Irgarol 1051 and diuron are photosystem II inhibitors in agricultural activities and antifouling paints in the shipping sector. This study focused on three major ports (western, southern, and eastern) surrounding Peninsular Malaysia to construct the distribution of both biocides on the basis of the seasonal and geographical changes. Surface seawater samples were collected from November 2011 to April 2012 and pretreated using the solid-phase extraction technique followed by quantification with GC-MS and LC-MS-MS for Irgarol 1051 and diuron, respectively. Generally, the distribution of Irgarol 1051 was lowest during November 2011 and highest during April 2012, and similar patterns were observed at all ports, whereas the distribution of diuron was rather vague. The increasing pattern of Irgarol 1051 from time to time is probably related to its accumulation in the seawater as a result of its half-life and consistent utilization. On the basis of the discriminant analysis, the temporal distribution of Irgarol 1051 varied at Klang North Port, Klang South Port, and Pasir Gudang Port, whereas diuron was temporally varied only at Kemaman Port. Furthermore, Irgarol 1051 was spatially varied during November 2011, whereas diuron did not show any significant changes throughout all sampling periods. Ecological risk assessment exhibited a high risk for diuron and Irgarol 1051, but Irgarol 1051 should be of greater concern because of its higher risk compared to that of diuron. Thus, it is recommended that the current Malaysian guidelines and regulations of biocide application should be reevaluated and improved to protect the ecosystem, as well as to prevent ecological risks to the aquatic environment.
    Matched MeSH terms: Diuron/analysis
  4. Ali HR, Arifin MM, Sheikh MA, Shazili NA, Bakari SS, Bachok Z
    Mar Pollut Bull, 2014 Aug 15;85(1):287-91.
    PMID: 24934440 DOI: 10.1016/j.marpolbul.2014.05.049
    The use of antifouling paints to the boats and ships is one among the threats facing coastal resources including coral reefs in recent decades. This study reports the current contamination status of diuron and its behaviour in the coastal waters of Malaysia. The maximum concentration of diuron was 285 ng/L detected at Johor port. All samples from Redang and Bidong coral reef islands were contaminated with diuron. Temporal variation showed relatively high concentrations but no significant difference (P>0.05) during November and January (North-East monsoon) in Klang ports (North, South and West), while higher levels of diuron were detected during April, 2012 (Inter monsoon) in Kemaman, and Johor port. Although no site has shown concentration above maximum permissible concentration (430 ng/L) as restricted by the Dutch Authorities, however, long term exposure studies for environmental relevance levels of diuron around coastal areas should be given a priority in the future.
    Matched MeSH terms: Diuron/analysis*
  5. Hanapiah M, Zulkifli SZ, Mustafa M, Mohamat-Yusuff F, Ismail A
    Mar Pollut Bull, 2018 Feb;127:453-457.
    PMID: 29475685 DOI: 10.1016/j.marpolbul.2017.12.015
    Diuron is an alternative biocide suggested to replace organotin in formulating antifouling paints to be applied on water-going vessels hull. However, it is potentially harmful to various non-targeted marine organisms due to its toxic properties. Present study aimed to isolate, screen and identify the potential of Diuron-degrading bacteria collected from the marine sediments of Port Klang, Malaysia. Preliminary screening was conducted by exposing isolated bacteria to 430ng/L (background level), followed by 600ng/L and 1000ng/L of Diuron concentrations. Nine bacteria colonies survived the exposure of the above concentrations. However, only two strains can tolerate to survive up to 1000μg/L, which were then characterised and identified using phenotypic tests and the standard 16S rRNA molecular identification. The strains were identified as Comamonas jiangduensis SZZ 10 and Bacillus aerius SZZ 19 (GenBank accession numbers: KU942479 and KU942480, respectively). Both strains have the potential of Diuron biodegradation for future use.
    Matched MeSH terms: Diuron/analysis*
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links