Displaying all 8 publications

Abstract:
Sort:
  1. Koh KT, Law WC, Zaw WM, Foo DHP, Tan CT, Steven A, et al.
    Europace, 2021 07 18;23(7):1016-1023.
    PMID: 33782701 DOI: 10.1093/europace/euab036
    AIMS: Atrial fibrillation (AF) is a preventable cause of ischaemic stroke but it is often undiagnosed and undertreated. The utility of smartphone electrocardiogram (ECG) for the detection of AF after ischaemic stroke is unknown. The aim of this study is to determine the diagnostic yield of 30-day smartphone ECG recording compared with 24-h Holter monitoring for detecting AF ≥30 s.

    METHODS AND RESULTS: In this multicentre, open-label study, we randomly assigned 203 participants to undergo one additional 24-h Holter monitoring (control group, n = 98) vs. 30-day smartphone ECG monitoring (intervention group, n = 105) using KardiaMobile (AliveCor®, Mountain View, CA, USA). Major inclusion criteria included age ≥55 years old, without known AF, and ischaemic stroke or transient ischaemic attack (TIA) within the preceding 12 months. Baseline characteristics were similar between the two groups. The index event was ischaemic stroke in 88.5% in the intervention group and 88.8% in the control group (P = 0.852). AF lasting ≥30 s was detected in 10 of 105 patients in the intervention group and 2 of 98 patients in the control group (9.5% vs. 2.0%; absolute difference 7.5%; P = 0.024). The number needed to screen to detect one AF was 13. After the 30-day smartphone monitoring, there was a significantly higher proportion of patients on oral anticoagulation therapy at 3 months compared with baseline in the intervention group (9.5% vs. 0%, P = 0.002).

    CONCLUSIONS: Among patients ≥55 years of age with a recent cryptogenic stroke or TIA, 30-day smartphone ECG recording significantly improved the detection of AF when compared with the standard repeat 24-h Holter monitoring.

    Matched MeSH terms: Electrocardiography, Ambulatory
  2. Wong KI, Ho MM
    PMID: 19162703 DOI: 10.1109/IEMBS.2008.4649200
    Extended patient monitoring has become increasingly important for detection of cardiac conditions, such as irregularities in the rhythms of the heart, while patient is practicing normal daily activity. This paper presents a design of a single lead wireless cardiac rhythm interpretive instrument that capable of capture the electrocardiogram (ECG) in digital format and transmitted to a remote base-station (i.e. PC) for storage and further interpretation. The design has achieved high quality of ECG and free of interference in the presence of motion.
    Matched MeSH terms: Electrocardiography, Ambulatory/instrumentation*
  3. Ibrahimy MI, Ahmed F, Mohd Ali MA, Zahedi E
    IEEE Trans Biomed Eng, 2003 Feb;50(2):258-62.
    PMID: 12665042
    An algorithm based on digital filtering, adaptive thresholding, statistical properties in the time domain, and differencing of local maxima and minima has been developed for the simultaneous measurement of the fetal and maternal heart rates from the maternal abdominal electrocardiogram during pregnancy and labor for ambulatory monitoring. A microcontroller-based system has been used to implement the algorithm in real-time. A Doppler ultrasound fetal monitor was used for statistical comparison on five volunteers with low risk pregnancies, between 35 and 40 weeks of gestation. Results showed an average percent root mean square difference of 5.32% and linear correlation coefficient from 0.84 to 0.93. The fetal heart rate curves remained inside a +/- 5-beats-per-minute limit relative to the reference ultrasound method for 84.1% of the time.
    Matched MeSH terms: Electrocardiography, Ambulatory/methods*
  4. Mohamed NG, Abidin NZ, Law KS, Abe M, Suzuki M, Muhamed AM, et al.
    J Physiol Anthropol, 2014;33:28.
    PMID: 25189184 DOI: 10.1186/1880-6805-33-28
    Menstruation is associated with significant unpleasantness, and wearing a sanitary napkin (SN) during menses causes discomfort. In addition, many Muslim women use a thick type of SN during menses due to the religious requirement that even disposable SNs be washed before disposal. Therefore, the objective of this study was to measure the physiological and psychological responses to wearing SNs of different thicknesses during menstruation and non-menstruation phases at rest and during physical activity/exercise among Muslim women.
    Matched MeSH terms: Electrocardiography, Ambulatory
  5. Seow SC, How AK, Chan SP, Teoh HL, Lim TW, Singh D, et al.
    J Stroke Cerebrovasc Dis, 2018 Aug;27(8):2182-2186.
    PMID: 29678635 DOI: 10.1016/j.jstrokecerebrovasdis.2018.03.019
    BACKGROUND: Occult atrial fibrillation (AF) is not uncommon in patients with stroke. In western cohorts, insertable loop recorders (ILRs) have been shown to be the gold-standard and are cost-effective for AF detection. Anticoagulation for secondary stroke prevention is indicated if AF is detected. The incidence of occult AF among Asian patients with cryptogenic stroke is unclear.

    METHODS: Patients with cryptogenic stroke referred between August 2014 and February 2017 had ILRs implanted. Episodes of AF >2 minutes duration were recorded using proprietary algorithms within the ILRs, whereupon clinicians and patients were alerted via remote monitoring. All AF episodes were adjudicated using recorded electrograms. Once AF was detected, patients were counseled for anticoagulation.

    RESULTS: Seventy-one patients with cryptogenic stroke, (age 61.9 ± 13.5 years, 77.5% male, mean CHA2DS2VASc score of 4.2 ± 1.3) had ILRs implanted. Time from stroke to the ILR implant was a median of 66 days. Duration of ILR monitoring was 345 ± 229 days. The primary endpoint of AF detection at 6 months was 12.9%; and at 12 months it was 15.2%. Median time to detection of AF was 50 days. The AF episodes were all asymptomatic and lasted a mean of 77 minutes (± 118.9). Anticoagulation was initiated in all but 1 patient found to have AF.

    CONCLUSIONS: The incidence of occult AF is high in Asian patients with cryptogenic stroke and comparable to western cohorts. The combination of ILR and remote monitoring is a highly automated, technologically driven, and clinically effective technique to screen for AF.

    Matched MeSH terms: Electrocardiography, Ambulatory
  6. Wan Muhaizan WM, Swaminathan M, Daud MS
    Malays J Pathol, 2004 Jun;26(1):59-63.
    PMID: 16196153
    Cardiac sarcoidosis is a disease of young adults. In most cases it presents with sudden death, arrhythmias, conduction disorders, heart failure or cardiomyopathy. The authors describe two cases of myocardial involvement by sarcoidosis that lead to death of the patients. Case one was a 26-year-old Indian man who was previously well and presented with sudden death. Autopsy showed nodules of sarcoid granuloma involving the heart, lungs and lymph nodes. Case two was a 47-year-old Indian lady who complained of reduced effort tolerance. Echocardiography showed that she had restrictive hypertrophic cardiomyopathy with heart failure. Seven months after initial presentation, she developed worsening of heart failure and died. Autopsy revealed involvement of the heart, lungs and liver by sarcoidosis.
    Matched MeSH terms: Electrocardiography, Ambulatory
  7. Yildirim O, Baloglu UB, Tan RS, Ciaccio EJ, Acharya UR
    Comput Methods Programs Biomed, 2019 Jul;176:121-133.
    PMID: 31200900 DOI: 10.1016/j.cmpb.2019.05.004
    BACKGROUND AND OBJECTIVE: For diagnosis of arrhythmic heart problems, electrocardiogram (ECG) signals should be recorded and monitored. The long-term signal records obtained are analyzed by expert cardiologists. Devices such as the Holter monitor have limited hardware capabilities. For improved diagnostic capacity, it would be helpful to detect arrhythmic signals automatically. In this study, a novel approach is presented as a candidate solution for these issues.

    METHODS: A convolutional auto-encoder (CAE) based nonlinear compression structure is implemented to reduce the signal size of arrhythmic beats. Long-short term memory (LSTM) classifiers are employed to automatically recognize arrhythmias using ECG features, which are deeply coded with the CAE network.

    RESULTS: Based upon the coded ECG signals, both storage requirement and classification time were considerably reduced. In experimental studies conducted with the MIT-BIH arrhythmia database, ECG signals were compressed by an average 0.70% percentage root mean square difference (PRD) rate, and an accuracy of over 99.0% was observed.

    CONCLUSIONS: One of the significant contributions of this study is that the proposed approach can significantly reduce time duration when using LSTM networks for data analysis. Thus, a novel and effective approach was proposed for both ECG signal compression, and their high-performance automatic recognition, with very low computational cost.

    Matched MeSH terms: Electrocardiography, Ambulatory
  8. Kalid N, Zaidan AA, Zaidan BB, Salman OH, Hashim M, Albahri OS, et al.
    J Med Syst, 2018 Mar 02;42(4):69.
    PMID: 29500683 DOI: 10.1007/s10916-018-0916-7
    This paper presents a new approach to prioritize "Large-scale Data" of patients with chronic heart diseases by using body sensors and communication technology during disasters and peak seasons. An evaluation matrix is used for emergency evaluation and large-scale data scoring of patients with chronic heart diseases in telemedicine environment. However, one major problem in the emergency evaluation of these patients is establishing a reasonable threshold for patients with the most and least critical conditions. This threshold can be used to detect the highest and lowest priority levels when all the scores of patients are identical during disasters and peak seasons. A practical study was performed on 500 patients with chronic heart diseases and different symptoms, and their emergency levels were evaluated based on four main measurements: electrocardiogram, oxygen saturation sensor, blood pressure monitoring, and non-sensory measurement tool, namely, text frame. Data alignment was conducted for the raw data and decision-making matrix by converting each extracted feature into an integer. This integer represents their state in the triage level based on medical guidelines to determine the features from different sources in a platform. The patients were then scored based on a decision matrix by using multi-criteria decision-making techniques, namely, integrated multi-layer for analytic hierarchy process (MLAHP) and technique for order performance by similarity to ideal solution (TOPSIS). For subjective validation, cardiologists were consulted to confirm the ranking results. For objective validation, mean ± standard deviation was computed to check the accuracy of the systematic ranking. This study provides scenarios and checklist benchmarking to evaluate the proposed and existing prioritization methods. Experimental results revealed the following. (1) The integration of TOPSIS and MLAHP effectively and systematically solved the patient settings on triage and prioritization problems. (2) In subjective validation, the first five patients assigned to the doctors were the most urgent cases that required the highest priority, whereas the last five patients were the least urgent cases and were given the lowest priority. In objective validation, scores significantly differed between the groups, indicating that the ranking results were identical. (3) For the first, second, and third scenarios, the proposed method exhibited an advantage over the benchmark method with percentages of 40%, 60%, and 100%, respectively. In conclusion, patients with the most and least urgent cases received the highest and lowest priority levels, respectively.
    Matched MeSH terms: Electrocardiography, Ambulatory
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links