Displaying all 4 publications

Abstract:
Sort:
  1. Nakasha JJ, Sinniah UR, Puteh A, Hassan SA
    ScientificWorldJournal, 2014;2014:168950.
    PMID: 24688363 DOI: 10.1155/2014/168950
    Tubers of safed musli (Chlorophytum borivilianum) were immersed in three different concentrations of gibberellic acid (GA3) or humic acid (HA) prior to planting. The highest concentration of GA3 (20 mg L(-1)) and all concentrations of HA (5, 10, and 15%) appeared to hasten tuber sprouting and promote uniform sprouting pattern. The use of 20 mg L(-1) GA3 or 15% HA successfully improved sprouting and mean sprouting time. Safed musli growth and development was improved through the increase in the number of leaves, total leaf area, leaf area index, and total fibrous root length. This directly influenced the number of new tubers formed. The use of 20 mg L(-1) GA3 or 15% HA gave similar response with nonsignificant difference among them. However, due to the cost of production, the result from this study suggests that 15% HA should be used to obtain improved sprouting percentage, homogeneous stand establishment, efficient plant growth and development, and increased yield of safed musli.
    Matched MeSH terms: Gene Expression Regulation, Developmental/physiology*
  2. Nikolov LA, Endress PK, Sugumaran M, Sasirat S, Vessabutr S, Kramer EM, et al.
    Proc Natl Acad Sci U S A, 2013 Nov 12;110(46):18578-83.
    PMID: 24167265 DOI: 10.1073/pnas.1310356110
    Rafflesiaceae, which produce the world's largest flowers, have captivated the attention of biologists for nearly two centuries. Despite their fame, however, the developmental nature of the floral organs in these giants has remained a mystery. Most members of the family have a large floral chamber defined by a diaphragm. The diaphragm encloses the reproductive organs where pollination by carrion flies occurs. In lieu of a functional genetic system to investigate floral development in these highly specialized holoparasites, we used comparative studies of structure, development, and gene-expression patterns to investigate the homology of their floral organs. Our results surprisingly demonstrate that the otherwise similar floral chambers in two Rafflesiaceae subclades, Rafflesia and Sapria, are constructed very differently. In Rafflesia, the diaphragm is derived from the petal whorl. In contrast, in Sapria it is derived from elaboration of a unique ring structure located between the perianth and the stamen whorl, which, although developed to varying degrees among the genera, appears to be a synapomorphy of the Rafflesiaceae. Thus, the characteristic features that define the floral chamber in these closely related genera are not homologous. These differences refute the prevailing hypothesis that similarities between Sapria and Rafflesia are ancestral in the family. Instead, our data indicate that Rafflesia-like and Sapria-like floral chambers represent two distinct derivations of this morphology. The developmental repatterning we identified in Rafflesia, in particular, may have provided architectural reinforcement, which permitted the explosive growth in floral diameter that has arisen secondarily within this subclade.
    Matched MeSH terms: Gene Expression Regulation, Developmental/physiology*
  3. Teh HF, Neoh BK, Hong MP, Low JY, Ng TL, Ithnin N, et al.
    PLoS One, 2013;8(4):e61344.
    PMID: 23593468 DOI: 10.1371/journal.pone.0061344
    To better understand lipid biosynthesis in oil palm mesocarp, in particular the differences in gene regulation leading to and including de novo fatty acid biosynthesis, a multi-platform metabolomics technology was used to profile mesocarp metabolites during six critical stages of fruit development in comparatively high- and low-yielding oil palm populations. Significantly higher amino acid levels preceding lipid biosynthesis and nucleosides during lipid biosynthesis were observed in a higher yielding commercial palm population. Levels of metabolites involved in glycolysis revealed interesting divergence of flux towards glycerol-3-phosphate, while carbon utilization differences in the TCA cycle were proven by an increase in malic acid/citric acid ratio. Apart from insights into the regulation of enhanced lipid production in oil palm, these results provide potentially useful metabolite yield markers and genes of interest for use in breeding programmes.
    Matched MeSH terms: Gene Expression Regulation, Developmental/physiology*
  4. Prasad TNVKV, Adam S, Visweswara Rao P, Ravindra Reddy B, Giridhara Krishna T
    IET Nanobiotechnol, 2017 Apr;11(3):277-285.
    PMID: 28476985 DOI: 10.1049/iet-nbt.2015.0122
    Advancement in materials synthesis largely depends up on their diverse applications and commercialisation. Antifungal effects of phytogenic silver nanoparticles (AgNPs) were evident, but the reports on the effects of the same on agricultural crops are scant. Herein, we report for the first time, size dependent effects of phytogenic AgNPs (synthesised using Stevia rebaudiana leaf extract) on the germination, growth and biochemical parameters of three important agricultural crops viz., rice (Oryza sativa L), maize (Zea mays L) and peanut (Arachis hypogaea L). AgNPs with varied sizes were prepared by changing the concentration and quantity of the Stevia rebaudiana leaf extract. As prepared AgNPs were characterized using the techniques, such as high-resolution transmission electron microscopy, particle size and zeta potential analyser. The measured (dynamic light scattering technique) average sizes of particles are ranging from 68.5 to 116 nm. Fourier transform infrared studies confirmed the participation of alcohols, aldehydes and amides in the reduction and stabilisation of the AgNPs. Application of these AgNPs to three agricultural crop seeds (rice, maize and peanut) resulted in size dependent effects on their germination, growth and biochemical parameters such as, chlorophyll content, carotenoid and protein content. Further, antifungal activity of AgNPs also evaluated against fungi, Aspergillus niger.
    Matched MeSH terms: Gene Expression Regulation, Developmental/physiology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links