Displaying all 5 publications

Abstract:
Sort:
  1. Shirajum Monir M, Yusoff SM, Mohamad A, Ina-Salwany MY
    J Aquat Anim Health, 2020 06;32(2):65-76.
    PMID: 32331001 DOI: 10.1002/aah.10099
    The production of tilapia Oreochromis spp. is rapidly growing throughout the world, but atypical motile aeromonad septicemia (MAS) is a current threat to the tilapia farming industry. The etiological agent of this disease is usually Aeromonas hydrophila. Mortality rates due to MAS are frequently high, resulting in a devastating negative impact on this industry worldwide; therefore, proper control measures regarding both prevention and treatment are necessary. Although vaccines against MAS for tilapia are available, their effectiveness is entirely dependent on the specific strain of problematic bacteria. Until now, whole-cell inactivated A. hydrophila vaccines for tilapia have exhibited the highest level of protection over live attenuated and recombinant vaccines. Among the various vaccine administration systems, only intraperitoneal (i.p.) injections of the A. hydrophila vaccine into tilapia were found to provide prominent immune protection. Vaccine efficacy was primarily measured by using the i.p. injection challenge model and estimating the relative percent survival of the immunized tilapia. Freund's incomplete adjuvant showed to be the most effective for tilapia MAS vaccines. In this review, multiple factors that directly or indirectly influence the efficacy of MAS vaccines for tilapia (adjuvants, challenge models, immunization doses and duration, and size of vaccinated fish) are discussed.
    Matched MeSH terms: Gram-Negative Bacterial Infections/prevention & control
  2. Sheikhlar A, Meng GY, Alimon R, Romano N, Ebrahimi M
    J Aquat Anim Health, 2017 Dec;29(4):225-235.
    PMID: 28937913 DOI: 10.1080/08997659.2017.1374310
    Aqueous and methanol extracts of lemon Citrus limon peel, Euphorbia hirta (aerial parts), and fenugreek Trigonella foenum-graecum seeds were tested for their in vitro antimicrobial activities against the bacterium Aeromonas hydrophila. A swab paper disk method showed that the methanol extract of E. hirta (EHE) had the largest inhibition zone and the lowest minimal inhibitory concentration compared to all other herbal extracts. Based on these results, EHE was included in the diets of Sharptooth Catfish Clarias gariepinus at 0 (control), 2, 5, or 7 g/kg of diet (experiment 1). Each treatment was conducted in triplicate, with 30 fish (mean weight ± SE = 9.4 ± 0.4 g) in each replicate. After 30 d, the growth, feed intake, hepatosomatic index (HSI), and plasma biochemical parameters were measured. With a separate batch of Sharptooth Catfish, the efficacy of the EHE diets in conferring fish resistance to A. hydrophila over 30 d was compared to that of a diet containing oxytetracycline (OTC; experiment 2). Six treatments were conducted in triplicate groups of 30 fish (mean weight ± SE = 9.0 ± 0.3 g); the Control fish were fed the control diet and were not injected with A. hydrophila, while the Control-AH and OTC-AH groups were infected with A. hydrophila and were fed either the control diet or the diet containing OTC at 1 g/199 g. The other three treatments included fish that were injected with A. hydrophila but fed diets with increasing EHE at 2, 5, or 7 g/kg. Experiment 1 showed no change to growth, feeding efficiency, HSI, or plasma biochemical parameters. In experiment 2, however, fish that were fed dietary EHE at 5 g/kg had significantly lower mortality than the Control-AH group, with further resistance observed for fish fed EHE at 7 g/kg. Dietary OTC was more effective than EHE as a prophylactic to A. hydrophila infection in Sharptooth Catfish. Nevertheless, EHE can potentially be a valuable dietary supplement to improve the resistance of Sharptooth Catfish to A. hydrophila infection. Received May 3, 2017; accepted August 24, 2017.
    Matched MeSH terms: Gram-Negative Bacterial Infections/prevention & control
  3. Anuradha K, Foo HL, Mariana NS, Loh TC, Yusoff K, Hassan MD, et al.
    J Appl Microbiol, 2010 Nov;109(5):1632-42.
    PMID: 20602654 DOI: 10.1111/j.1365-2672.2010.04789.x
    To evaluate a live recombinant Lactococcus lactis vaccine expressing aerolysin genes D1 (Lac-D1ae) and/or D4 (Lac-D4ae) in protection against Aeromonas hydrophila in tilapia (Oreochromis niloticus).
    Matched MeSH terms: Gram-Negative Bacterial Infections/prevention & control
  4. Monir MS, Yusoff SBM, Zulperi ZBM, Hassim HBA, Mohamad A, Ngoo MSBMH, et al.
    BMC Vet Res, 2020 Jul 02;16(1):226.
    PMID: 32615969 DOI: 10.1186/s12917-020-02443-y
    BACKGROUND: Streptococcosis and Motile Aeromonad Septicemia (MAS) are important diseases of tilapia, Oreochromis spp. and causes huge economic losses in aquaculture globally. The feed-based vaccination may be an alternative to minimize major infectious diseases in tilapia. Thus, this study aims to evaluate the haemato-immunological responses and effectiveness of a newly developed feed-based killed bivalent vaccine against Streptococcus iniae and Aeromonas hydrophila in hybrid red tilapia. A total of 495 hybrid red tilapia of 61.23 ± 4.95 g were distributed into 5 groups (each with triplicate). The fish were immunized orally through bivalent (combined S. iniae and A. hydrophila) spray vaccine (BS group), bivalent formulate vaccine (BF group), monovalent S. iniae vaccine (MS group), monovalent A. hydrophila vaccine (MA group) and unvaccinated as a control group. The vaccine was orally administered on days 0, 14 and 42 applied feed-based bacterin at 5% body weight. The blood and spleen samples were collected from all groups on 7, 21 and 49 days post-vaccination, and also 96 h post-infection to assess their haemato-immune responses.

    RESULTS: Compared with the unvaccinated group, leukocyte, lymphocytes, monocytes, granulocytes counts in vaccinated groups were significantly (P 

    Matched MeSH terms: Gram-Negative Bacterial Infections/prevention & control
  5. Teerawattanapong N, Kengkla K, Dilokthornsakul P, Saokaew S, Apisarnthanarak A, Chaiyakunapruk N
    Clin Infect Dis, 2017 May 15;64(suppl_2):S51-S60.
    PMID: 28475791 DOI: 10.1093/cid/cix112
    Background: This study evaluated the relative efficacy of strategies for the prevention of multidrug-resistant gram-negative bacteria (MDR-GNB) in adult intensive care units (ICUs).

    Methods: A systematic review and network meta-analysis was performed; searches of the Cochrane Library, PubMed, Embase, and CINAHL (Cumulative Index to Nursing and Allied Health Literature) included all randomized controlled trials and observational studies conducted in adult patients hospitalized in ICUs and evaluating standard care (STD), antimicrobial stewardship program (ASP), environmental cleaning (ENV), decolonization methods (DCL), or source control (SCT), simultaneously. The primary outcomes were MDR-GNB acquisition, colonization, and infection; secondary outcome was ICU mortality.

    Results: Of 3805 publications retrieved, 42 met inclusion criteria (5 randomized controlled trials and 37 observational studies), involving 62068 patients (median age, 58.8 years; median APACHE [Acute Physiology and Chronic Health Evaluation] II score, 18.9). The majority of studies reported extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae and MDR Acinetobacter baumannii. Compared with STD, a 4-component strategy composed of STD, ASP, ENV, and SCT was the most effective intervention (rate ratio [RR], 0.05 [95% confidence interval {CI}, .01-.38]). When ENV was added to STD+ASP or SCT was added to STD+ENV, there was a significant reduction in the acquisition of MDR A. baumannii (RR, 0.28 [95% CI, .18-.43] and 0.48 [95% CI, .35-.66], respectively). Strategies with ASP as a core component showed a statistically significant reduction the acquisition of ESBL-producing Enterobacteriaceae (RR, 0.28 [95% CI, .11-.69] for STD+ASP+ENV and 0.23 [95% CI, .07-.80] for STD+ASP+DCL).

    Conclusions: A 4-component strategy was the most effective intervention to prevent MDR-GNB acquisition. As some strategies were differential for certain bacteria, our study highlighted the need for further evaluation of the most effective prevention strategies.

    Matched MeSH terms: Gram-Negative Bacterial Infections/prevention & control*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links