Displaying all 7 publications

Abstract:
Sort:
  1. Berki DM, Liu L, Choon SE, David Burden A, Griffiths CEM, Navarini AA, et al.
    J Invest Dermatol, 2015 Dec;135(12):2964-2970.
    PMID: 26203641 DOI: 10.1038/jid.2015.288
    Caspase recruitment family member 14 (CARD14, also known as CARMA2), is a scaffold protein that mediates NF-κB signal transduction in skin keratinocytes. Gain-of-function CARD14 mutations have been documented in familial forms of psoriasis vulgaris (PV) and pityriasis rubra pilaris (PRP). More recent investigations have also implicated CARD14 in the pathogenesis of pustular psoriasis. Follow-up studies, however, have been limited, so that it is not clear to what extent CARD14 alleles account for the above conditions. Here, we sought to address this question by carrying out a systematic CARD14 analysis in an extended patient cohort (n=416). We observed no disease alleles in subjects with familial PV (n=159), erythrodermic psoriasis (n=23), acral pustular psoriasis (n=100), or sporadic PRP (n=29). Conversely, our analysis of 105 individuals with generalized pustular psoriasis (GPP) identified a low-frequency variant (p.Asp176His) that causes constitutive CARD14 oligomerization and shows a significant association with GPP in Asian populations (P=8.4×10(-5); odds ratio=6.4). These data indicate that the analysis of CARD14 mutations could help stratify pustular psoriasis cohorts but would be mostly uninformative in the context of psoriasis and sporadic PRP.
    Matched MeSH terms: Guanylate Cyclase/genetics*
  2. Zakaria ZA, Sulaiman MR, Jais AM, Somchit MN, Jayaraman KV, Balakhrisnan G, et al.
    Fundam Clin Pharmacol, 2006 Aug;20(4):365-72.
    PMID: 16867020
    The present study was carried out to investigate on the possible involvement of L-arginine/nitric oxide/cyclic guanosine monophosphate (L-arginine/NO/cGMP) pathway in the aqueous extract of Muntingia calabura (AEMC) leaves antinociception in mice assessed by abdominal constriction test. The AEMC, obtained by soaking the dried leaves in distilled water (DH(2)O) (1 : 2; w/v) for 24 h, was prepared in concentrations of 10%, 50% and 100% that were approximately equivalent to doses of 27, 135 and 270 mg/kg, and administered subcutaneously (s.c.) 5 min after pre-treatment (s.c.) of mice with DH(2)O, L-arginine (20 mg/kg), N(G)-monomethyl-L-arginine acetate (L-NMMA; 20 mg/kg), N(G)-nitro-L-arginine methyl esters (L-NAME; 20 mg/kg), methylene blue (MB) (20 mg/kg), respectively. The AEMC was found to exhibit a concentration-dependent antinociception after pre-challenge with DH(2)O. Interestingly, pre-treatment with L-arginine was found to block significantly (P < 0.05) the AEMC antinociception but only at the highest concentration (100%) of AEMC used. On the other hand, pre-treatment with L-NAME was found to significantly (P < 0.05) enhance the low concentration but inhibit the high concentration AEMC antinociception. MB was found to significantly (P < 0.05) enhance AEMC antinociception at all concentrations used. Except for the higher concentration of AEMC used, co-treatment with L-NAME was found to insignificantly and significantly (P < 0.05) reverse the L-arginine effect when given alone or with low concentration AEMC, respectively. In addition, co-treatment with MB significantly (P < 0.05) reversed the L-arginine effect when given alone or with 10% concentration AEMC but failed to affect the activity of the rest of concentrations used. As a conclusion, this study has demonstrated the involvement of L-arginine/NO/cGMP pathway in AEMC antinociception.
    Matched MeSH terms: Guanylate Cyclase/antagonists & inhibitors; Guanylate Cyclase/metabolism
  3. Ng CT, Fong LY, Low YY, Ban J, Hakim MN, Ahmad Z
    Physiol Res, 2016 12 13;65(6):1053-1058.
    PMID: 27539106
    The endothelial barrier function is tightly controlled by a broad range of signaling cascades including nitric oxide-cyclic guanosine monophosphate (NO-cGMP) pathway. It has been proposed that disturbances in NO and cGMP production could interfere with proper endothelial barrier function. In this study, we assessed the effect of interferon-gamma (IFN-gamma), a pro-inflammatory cytokine, on NO and cGMP levels and examined the mechanisms by which NO and cGMP regulate the IFN-gamma-mediated HUVECs hyperpermeability. The flux of fluorescein isothiocyanate-labeled dextran across cell monolayers was used to study the permeability of endothelial cells. Here, we found that IFN-gamma significantly attenuated basal NO concentration and the increased NO levels supplied by a NO donor, sodium nitroprusside (SNP). Besides, application of IFN-gamma also significantly attenuated both the basal cGMP concentration and the increased cGMP production donated by a cell permeable cGMP analogue, 8-bromo-cyclic GMP (8-Br-cGMP). In addition, exposure of the cell monolayer to IFN-gamma significantly increased HUVECs basal permeability. However, L-NAME pretreatment did not suppress IFN-gamma-induced HUVECs hyperpermeability. L-NAME pretreatment followed by SNP or SNP pretreatment partially reduced IFN-gamma-induced HUVECs hyperpermeability. Pretreatment with a guanylate cyclase inhibitor, 6-anilino-5,8-quinolinedione (LY83583), led to a further increase in IFN-gamma-induced HUVECs hyperpermeability. The findings suggest that the mechanism underlying IFN-gamma-induced increased HUVECs permeability is partly related to the inhibition of NO production.
    Matched MeSH terms: Guanylate Cyclase/antagonists & inhibitors
  4. Bello I, Usman NS, Mahmud R, Asmawi MZ
    J Ethnopharmacol, 2015 Dec 4;175:422-31.
    PMID: 26429073 DOI: 10.1016/j.jep.2015.09.031
    Alstonia scholaris has a long history of use in the Ayurveda traditional treatment of various ailments including hypertension. We have reported the blood pressure lowering activity of the extract of A. scholaris. The following research aim to delineate the pharmacological mechanism involve in the antihypertensive action.
    Matched MeSH terms: Guanylate Cyclase/metabolism
  5. Ajay M, Achike FI, Mustafa MR
    Pharmacol Res, 2007 May;55(5):385-91.
    PMID: 17317209
    In this study, we report the effects of a non-antioxidant flavonoid flavone on vascular reactivity in Wistar-Kyoto (WKY) rat isolated aortae. Whether flavone directly modulates vascular reactivity in spontaneously hypertensive rat (SHR) and streptozotocin-induced diabetic-WKY rat isolated aortae was also determined. Thoracic aortic rings were mounted in organ chambers and exposed to various drug treatments in the presence of flavone (10 microM) or its vehicle (DMSO), which served as control. Pretreatment with flavone enhanced relaxant effects to endothelium-dependent vasodilator acetylcholine (ACh) and attenuated contractile effects to alpha(1)-receptor agonist phenylephrine (PE) in WKY aortae compared to those observed in control aortic rings. Flavone had no effect on relaxations to ACh in WKY aortae incubated with either L-NAME or methylene blue, but enhanced relaxations to ACh in WKY aortae incubated with indomethacin or partially depolarized with KCl. Relaxations to ACh are totally abolished in both control or flavone pretreated endothelium-denuded WKY aortae. Flavone attenuated the inhibition by beta-NADH of ACh-induced relaxation in WKY aortae, but it had no significant effect on the transient contractions induced by beta-NADH nor the pyrogallol-induced abolishment of ACh-induced relaxation in WKY aortae. Flavone enhanced endothelium-independent relaxation to sodium nitroprusside (SNP) in both endothelium-intact and -denuded WKY aortae. Flavone enhanced relaxation to ACh and SNP as well as attenuated contractile effects to PE in SHR and diabetic aortae, a finding similar to that observed in normal WKY aortae. From these results, we conclude that flavone modulates vascular reactivity in normal as well as hypertensive and diabetic aortae. These effects of flavone results probably through enhanced bioactivity of nitric oxide released from the endothelium.
    Matched MeSH terms: Guanylate Cyclase/antagonists & inhibitors; Guanylate Cyclase/metabolism
  6. Sosroseno W, Bird PS, Seymour GJ
    J Periodontal Res, 2009 Aug;44(4):529-36.
    PMID: 18973550 DOI: 10.1111/j.1600-0765.2008.01157.x
    Elevated nitric oxide (NO) has been associated with destructive periodontal disease. The aim of the present study was to test the hypothesis that exogenous NO may inhibit a protective immune response to Aggregatibacter actinomycetemcomitans lipopolysaccharide (LPS) in a murine model.
    Matched MeSH terms: Guanylate Cyclase/antagonists & inhibitors
  7. Sosroseno W, Sugiatno E
    Acta Biomed, 2008 Aug;79(2):110-6.
    PMID: 18788505
    BACKGROUND AND AIMS OF THE WORK: Nitric oxide (NO) has been reported to enhance the production of cAMP by hydroxyapatite (HA)-induced a human osteoblast cell line (HOS cells). The aim of the present study was to test the hypothesis that exogenous NO may up-regulate the proliferation of hydroxyapatite (HA)-induced HOS cells via the cyclic-AMP-protein kinase A (PKA) pathway.
    Matched MeSH terms: Guanylate Cyclase
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links