METHODS: This is a retrospective study done in neonates and infants up to 3 months of age with duct-dependent pulmonary circulation who underwent DS from January 2014 to December 2015. Post-stenting PA growth, surgical outcomes of PA reconstruction, post-surgical re-interventions, morbidity and mortality were analysed.
RESULTS: During the study period, 46 patients underwent successful DS, of whom 38 underwent presurgery catheterization and definite surgery. There was significant growth of PAs in these patients. Biventricular repair was done in 31 patients while 7 had univentricular palliation. Left PA augmentation was required in 13 patients, and 10 required central PA augmentation during surgery. The mean follow-up period post-surgery was 4.5 ± 1.5 years. No significant postoperative complications were seen. No early or follow-up post-surgery mortality was seen. Four patients required re-interventions in the form of left PA stenting based on the echocardiography or computed tomography evidence of significant stenosis.
CONCLUSIONS: DS provides good short-term palliation and the growth of PAs. However, a significant number of stented patients require reparative procedure on PAs at the time of surgical intervention. Acquired changes in the PAs following DS may be the reason for reintervention following PA reconstruction.
DESIGN: Retrospective cohort analysis of children who underwent a systemic-to-pulmonary shunt after excluding those who had it for Norwood or Damus-Kaye-Stansel procedure.
SETTING: The Royal Children's Hospital, Melbourne, VIC, Australia.
PATIENTS: From 2008 to 2015, 201 children who had a systemic-to-pulmonary shunt were included.
INTERVENTIONS: Major adverse event is defined as one or more of cardiac arrest, chest reopening, or requirement for extracorporeal membrane oxygenation. Study outcome is a "composite poor outcome," defined as one or more of acute kidney injury, necrotizing enterocolitis, brain injury, or in-hospital mortality.
MEASUREMENTS AND MAIN RESULTS: Median (interquartile range) age was 12 days (6-38 d) and median (interquartile range) time to major adverse event was 5.5 hours (2-17 hr) after admission. Overall, 36 (18%) experienced a major adverse event, and reasons were over-shunting (n = 17), blocked shunt (n = 13), or other (n = 6). Fifteen (88%) in over-shunting group suffered a cardiac arrest compared with two (15%) in the blocked shunt group (p < 0.001). The composite poor outcome was seen in 15 (88%) in over-shunting group, four (31%) in the blocked shunt group, and 56 (34%) in those who did not experience a major adverse event (p < 0.001). By multivariable analysis, predictors for composite poor outcome were major adverse event due to over-shunting (no major adverse event-reference; over-shunting odds ratio, 18.60; 95% CI, 3.87-89.4 and shunt-block odds ratio, 1.57; 95% CI, 0.46-5.35), single ventricle physiology (odds ratio, 4.70; 95% CI, 2.34-9.45), and gestation (odds ratio, 0.84/wk increase; 95% CI, 0.74-0.96).
CONCLUSIONS: Infants who suffer major adverse event due to over-shunting experience considerably poorer outcomes than those who experience events due to shunt block. A mainly hypoxic event with maintenance of systemic perfusion (as often seen in a blocked shunt) is less likely to result in poorer outcomes than those after a hypoxic-ischemic event (commonly seen in over-shunting).