The present study reports the synthesis of various new derivatives based on 5-aryl-2-bromo-3-hexylthiophene with moderate-to-good yields via a palladium-catalyzed Suzuki cross-coupling reaction. This coupling method involved the reaction of 2,5-dibromo-3-hexylthiophene with several arylboronic acids in order to synthesize corresponding thiophene derivatives under controlled and optimal reaction conditions. The different substituents (CH3, OCH3, Cl, F etc.) present on arylboronic acids are found to have significant electronic effects on the overall properties of new products. The synthesized thiophene molecules were studied for their haemolytic, biofilm inhibition and anti-thrombolytic activities, and almost all products showed potentially good properties. The compound 2-bromo-5-(3-chloro-4-fluorophenyl)-3-hexylthiophenein particular exhibited the highest values for haemolytic and bio-film inhibition activities among all newly synthesized derivatives. In addition, the compound 2-bromo-3-hexyl-5-(4-iodophenyl)thiophene also showed high anti-thrombolytic activity, suggesting the potential medicinal applications of these newly synthesized compounds.
A series of 1, 2, 4-triazole derivatives bearing piperidine moiety has been introduced as new anti-diabetic drug candidates with least cytotoxicity. p-Chlorophenylsulfonyl chloride (1) and ethyl nipecotate (2) were the starting reagents that resulted into corresponding 3,4,5-trisubstituted-1,2,4-triazole (6) through a series of steps. A series of electrophiles, 9a-e, were synthesized by reacting 4-bromobutyryl chloride (7) with differently substituted aromatic amines (8a-e) under basic aqueous medium. Target derivatives, 10a-e, were synthesized by the reaction of compound 6 with N-aryl-4-bromobutanamides (9a-e) in an aprotic solvent. Structures of all the derivatives were verified by spectroscopic analysis using IR, 1H-NMR, 13C-NMR and EIMS. Most of the derivatives revealed moderate to good α-glucosidase inhibitory activity with reference to acarbose. The moderate hemolytic potential demonstrated least toxicity.
The present study describes several novel 2,5-biaryl-3-hexylthiophene derivatives (3a-i) synthesized via a Pd(0)-catalyzed Suzuki cross-coupling reaction in moderate to good yields. The novel compounds were also analyzed for their anti-thrombolytic, haemolytic, and biofilm inhibition activities. In addition, the anti-tumor activity was also evaluated in vitro for newly-synthesized compounds, where 3-hexyl-2,5-bis(4-(methylthio)phenyl)thiophene exhibited the best anti-tumor activity against 4T1 cells with IC50 value of 16 μM. Moreover, 2,5-bis(4-methylphenyl)-3-hexylthiophene showed the highest activity against MCF-7 cells with an IC50 value of 26.2 μM. On the other hand, the compound 2,5-bis(4-chloropheny)-3-hexylthiophene exhibited excellent biofilm inhibition activity. Furthermore, the compound 2,5-bis(3-chloro-4-fluorophenyl)-3-hexylthiophene also exhibited better anti-thrombolytic and hemolytic activity results as compared to the other newly-synthesized compounds.
A series of new derivatives of 4-(2-chloroethyl)morpholine hydrochloride (5) were efficiently synthesized. Briefly, different aromatic organic acids (1a-f) were refluxed to acquire respective esters (2a-f) using conc. H2SO4 as catalyst. The esters were subjected to nucleophillic substitution by monohydrated hydrazine to acquire hydrazides (3a-f). The hydrazides were cyclized with CS2 in the presence of KOH to yield corresponding oxadiazoles (4a-f). Finally, the derivatives, 6a-f, were prepared by reacting oxadiazoles (4a-f) with 5 using NaH as activator. Structures of all the derivatives were elucidated through 1D-NMR EI-MS and IR spectral data. All these molecules were subjected to antibacterial and hemolytic activities and showed good antibacterial and hemolytic potential relative to the reference standards.