Hepatitis B virus (HBV) infection led to 66% liver deaths world-wide in year 2015. Thirty-seven per cent of these deaths were the result of chronic hepatitis B (CHB)-associated hepatocellular carcinoma (HCC). Although early diagnosis of HCC improves survival, early detection is rare. Methylation of HBV DNA including covalently closed circular DNA (cccDNA) is more often encountered in HCC cases than those in CHB and cirrhosis. Three typical CpG islands within the HBV genome are the common sites for methylation. The HBV cccDNA methylation affects the viral replication and protein expression in the course of infection and may associate with the disease pathogenesis and HCC development. We review the current findings in HBV DNA methylation that provide insights into its role in HCC diagnosis.
The C-terminal domain of Nipah virus (NiV) nucleocapsid protein (NP₄₀₁₋₅₃₂) was inserted at the N-terminus and the immunodominant loop of hepatitis B core antigen (HBc). The stability of NP₄₀₁₋₅₃₂ increased tremendously when displayed on the HBc particles. These particles reacted specifically with the swine anti-NiV and the human anti-HBc antisera.
Poly(oligo(ethylene glycol) methacrylate) (POEGMA), an inert polymer was grafted onto an anion exchange adsorbent for the exclusion of relatively larger hepatitis B virus-like particles (HB-VLPs) from the anion exchange ligand (Q) and at the same time this process allowed the selective adsorption of smaller size Escherichia coli host cell proteins (HCPs). The chain lengths of the POEGMA grafted were modulated by varying the amount of monomers used in the polymer grafting. The purification factor and yield of the HB-VLPs obtained from the flow-through of negative chromatography were 2.3 and 66.0±3.1%, respectively, when shorter chain length of POEGMA (SQ) was grafted. Adsorbent grafted with longer chain of POEGMA (LQ) excluded some HCPs that are larger in size together with the HB-VLPs, reducing the purity of the recovered HB-VLPs. Further heat-treatment of the flow-through pool from SQ followed by centrifugation increased the purity of heat stable HB-VLPs to 87.5±1.1%. Heat-treatment of the flow through sample resulted in thermal denaturation and aggregation of HCPs, while the heat stable HB-VLPs still remained intact as observed under a transmission electron microscope. The performance of the negative chromatography together with heat treatment in the purification of HB-VLPs is far better than the reported bind-and-elute techniques.
Cell-internalizing peptides (CIPs) can be used to mediate specific delivery of nanoparticles across cellular membrane. The objective of this study was to develop a display technique using hepatitis B virus (HBV) capsid-binding peptide as a "nanoglue" to present CIPs on HBV nanoparticles for cell-targeting delivery. A CIP was selected from a phage display library and cross-linked specifically at the tips of the spikes of the HBV capsid nanoparticle via the "nanoglue" by using 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDC) and N-hydroxysulfosuccinimide (sulfo-NHS). Fluorescent oligonucleotides packaged in the nanoparticles and the fluorescein molecules conjugated on the nanoparticles were delivered to cells by using this display technique. This study demonstrated a proof of principle for cell-targeting delivery via "nanoglue" bioconjugation.
M13 phages that display random disulfide constrained heptapeptides on their gpIII proteins were used to select for high affinity ligands to hepatitis B core antigen (HBcAg). Phages bearing the amino acid sequences C-WSFFSNI-C and C-WPFWGPW-C were isolated, and a binding assay in solution showed that these phages bind tightly to full-length and truncated HBcAg with K D rel values less than 25 nM, which is at least 10 orders of magnitude higher than phage carrying the peptide sequence LLGRMK selected from a linear peptide library. Both the phages that display the constrained peptides were inhibited from binding to HBcAg particles by a monoclonal antibody that binds specifically to the immunodominant region of the particles. A synthetic heptapeptide with the amino acid sequence WSFFSNI derived from one of the fusion peptides inhibits the binding of large surface antigen (L-HBsAg) to core particles with an IC50 value of 12 +/- 2 microM. This study has identified a smaller peptide with a greater inhibitory effect on L-HBsAg-HBcAg association.