Displaying all 4 publications

Abstract:
Sort:
  1. Chua KH, Aminuddin BS, Fuzina NH, Ruszymah BH
    Eur Cell Mater, 2005 Jun 17;9:58-67; discussion 67.
    PMID: 15962238
    This study was to investigate the effects of insulin-transferrin-selenium (ITS) on the proliferation and quantitative gene expression of adult human nasal septum chondrocytes in monolayer culture expansion and the formation of tissue engineered hyaline cartilage. Effects of ITS on human nasal septum chondrocytes monolayer culture expansion and gene expression were evaluated in various culture media either added with 2% fetal bovine serum (FBS) or 1 ng/mL basic fibroblast growth factor plus 1 ng/mL transforming growth factor or both serum and growth factors supplementation in comparison with medium added with 10%FBS. Chondrocytes cultured in medium added with 2% fetal bovine serum and growth factors either supplemented with or without ITS were then mixed with pluronic F-127 hydrogel for in vivo tissue engineered cartilage formation in nude mice model. Engineered tissues were removed after 8 weeks of implantation and evaluated with histological staining, immunohistochemistry, transmission electron microscopy and quantitative gene expression analysis. ITS promoted human chondrocytes proliferation and reduced chondrocytes dedifferentiation in media supplemented with serum and growth factors. ITS with 2% FBS and growth factors provided 15-fold increased in chondrocytes number by the end of the culture period compared to the standard culture medium used in chondrocytes culture (medium added with 10% FBS). Engineered tissue resulted from ITS supplementation demonstrated higher quality of cartilage formation. In conclusion, our study has demonstrated the benefits of ITS supplementation in human chondrocytes monolayer culture and tissue engineering cartilage formation.
    Matched MeSH terms: Hyaline Cartilage/cytology; Hyaline Cartilage/metabolism*; Hyaline Cartilage/ultrastructure
  2. Ruszymah BH, Chua K, Latif MA, Hussein FN, Saim AB
    Int J Pediatr Otorhinolaryngol, 2005 Nov;69(11):1489-95.
    PMID: 15941595
    Treatment and management of congenital as well as post-traumatic trachea stenosis remains a challenge in pediatric surgery. The aim of this study was to reconstruct a trachea with human nasal septum chondrocytes by using the combination of biodegradable hydrogel and non-biodegradable high-density polyethylene (HDP) as the internal predetermined shape scaffold.
    Matched MeSH terms: Hyaline Cartilage/cytology*; Hyaline Cartilage/metabolism
  3. Samsudin EZ, Kamarul T
    JUMMEC, 2014;17(2):1-11.
    MyJurnal
    Autologous chondrocyte implantation (ACI) is a significant technique that has gained widespread use for the treatment of focal articular cartilage damage. Since its inception in 2004, the Tissue Engineering Group (TEG) of the Faculty of Medicine, University Malaya has been dedicated to carrying out extensive research on this cell-based therapy. The objective of this report, comprising one clinical case report, six animal studies and one laboratory study, is to summarise and discuss TEG’s key findings. On the whole, we observed that the ACI technique was effective in regenerating hyaline-like cartilage in treated defects. Autologous chondrocytes and mesenchymal stem cells (MSC) were found to produce comparable tissue repair irrespective of the state of MSC differentiation, and the use of alginate-based scaffolding and oral pharmacotherapy (Glucosamine and Chondroitin Sulphate) was shown to enhance ACI-led tissue repair. ACI is suggested to be an efficient therapeutic option for the treatment of articular cartilage defects of the knee.
    Matched MeSH terms: Hyaline Cartilage
  4. Ude Chinedu Cletus, Azizi Miskon, Ruszymah Idrus
    Sains Malaysiana, 2018;47(11):2757-2767.
    Despite remarkable mechanical durability and strength, hyaline cartilage has very limited capacity for self-repair when injured and over time, may degenerate to osteoarthritis. We evaluated the most significant mile stones attained, in the pursuit of cure for cartilage defects and osteoarthritis. The basic treatment options include: Natural or physical therapy, medications, nutritional supplements, nutriceuticals and chondroprotective agents. Next are repairs and replacements, which include surgical procedures: Debridement/chondroplasty, microfracturing, mosaicplasty, periosteum transplantation, osteochondral autografting and allografting, high tibial osteotomy and total knee arthroplasty. But, current trend has shifted from repair, replacement, to most recently regeneration. Regenerations include the cell and gene therapies. While cell therapy involves the use of cells isolated from different tissues to cause regeneration of cartilage; gene therapy involves the selection of appropriate gene and optimal vector to incorporate cDNA. There has been much positivity reported with big animal models, which has led to several ongoing clinical trials. Translations of these findings hold high promises, though not without inherent regulatory hurdles. Considering the initial success rates, there are increasing hopes of realizing these treatments from bench to bedsides. Significant improvements in the treatment of cartilage degenerations and osteoarthritis have been made so far, but no gold standard delineated.
    Matched MeSH terms: Hyaline Cartilage
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links