Displaying all 6 publications

Abstract:
Sort:
  1. Vethakkan SR, Walters JM, Gooley JL, Boston RC, Kay TW, Goodman DJ, et al.
    Transplantation, 2014 Jan 27;97(2):e9-11.
    PMID: 24434489 DOI: 10.1097/01.TP.0000437565.15965.67
    Matched MeSH terms: Islets of Langerhans Transplantation*
  2. Vakhshiteh F, Allaudin ZN, Mohd Lila MA, Hani H
    Xenotransplantation, 2013 02 14;20(2):82-8.
    PMID: 23406308 DOI: 10.1111/xen.12023
    BACKGROUND: The successful isolation, purification, and culture of caprine islets has recently been reported. The present study shows arange of size distribution in caprine islet diameter from 50 to 250 μm, in which 80% of the total islet yield was comprised of small islets.

    METHODS: Caprine islets were isolated and purified. Islets were handpicked and the diameter of the islets was recorded using light microscopy. Viablility of the islets was analyzed by confocal microscopy. Insulin secretion assay was carried out and analyzed by ELISA.

    RESULTS: When tested at 48 h after isolation, these small islets were 29.3% more viable compared to the large-sized islets. Large islets showed a high ratio (P 

    Matched MeSH terms: Islets of Langerhans Transplantation*
  3. Homayoun Hani, Mohd-Azmi Mohd-Lila, Rasedee Abdullah, Zeenathul Nazariah Allaudin, Kazhal Sarsaifi, Faez Firdaus Jesse Abdullah
    MyJurnal
    Diabetes is one of the major life-threatening health problems worldwide today. It is one of the most fastgrowing diseases that cause many health complications and a leading cause of decreasing life expectancy and high mortality rate. Many studies have suggested several different types of intervention to treat Type 1 diabetes such as insulin therapy, islet transplantation, islet xenotransplantation and stem cell therapy. However, issues regarding the efficacy, cost and safety of these treatments are not always well addressed. For decades, diabetes treatments with few side effects and long-lasting insulin independence has remained one of the most challenging tasks facing scientists. Among the treatments mentioned above, application of human islet transplantation in patients with type 1 diabetes has progressed rapidly with significant achievement. Again, the lack of appropriate donors for islet transplantation and its high cost have led researchers to look for other alternatives. In this review, we discuss very pertinent issues that are related to diabetes treatments, their availability, advantages, disadvantages and also cost,
    Matched MeSH terms: Islets of Langerhans Transplantation
  4. Hani H, Ibrahim TA, Othman AM, Lila MA, bt Allaudin ZN
    Xenotransplantation, 2010 12 17;17(6):469-80.
    PMID: 21158948 DOI: 10.1111/j.1399-3089.2010.00616.x
    BACKGROUND: Insufficient availability of human donors makes the search for alternative source of islet cells mandatory for future developments in pancreatic transplantation. The present study investigates the potential of caprine as an alternative source of pancreatic islets. The objectives of the study were to optimize techniques for caprine islet isolation and purification for culture establishment, and to subsequently assess their viable and functional potential.

    METHODS: Caprine pancreatic tissues were collected from a local slaughterhouse and prior transported to the laboratory by maintaining the cold chain. Islets were obtained by a collagenase-based digestion and optimized isolation technique. Islet cell purity and viability were determined by dithizone and trypan blue staining, respectively. Islet clusters of different sizes were positively identified by staining methods and demonstrated 90% viability in the culture system. Following static incubation, an in vitro insulin secretion assay was carried out and analyzed by ELISA.

    RESULTS: The islets remained satisfactorily viable for 5 days in the culture system following regular media changes. The current study has successfully optimized the isolation, purification and culture maintenance of caprine islets.

    CONCLUSION: The successful yield, viability and functionality of islets isolated from the optimized protocol provide promising potential as an alternative source of islets for diabetes and transplantation researches.

    Matched MeSH terms: Islets of Langerhans Transplantation/methods*
  5. Lock LT, Tzanakakis ES
    Med J Malaysia, 2008 Jul;63 Suppl A:5-6.
    PMID: 19024957
    Embryonic stem cells (ESCs) can be an inexhaustible source of islet cells for transplantation. Previously published protocols have been characterized by low differentiation efficiency. In this study, we developed a scalable system for the growth and differentiation of hESCs towards pancreatic islets. Our results showed that hESCs can be grown on microcarriers to a larger scale and directed to differentiate into pancreatic progenitor endoderm cells. This culture system would represent an economical differentiation protocol that can be scaled-up to meet the demand in islet transplantation.
    Matched MeSH terms: Islets of Langerhans Transplantation/methods*
  6. Hani H, Allaudin ZN, Tengku Ibrahim TA, Mohd-Lila MA, Sarsaifi K, Camalxaman SN, et al.
    In Vitro Cell Dev Biol Anim, 2015 Feb;51(2):113-20.
    PMID: 25303943 DOI: 10.1007/s11626-014-9821-7
    Pancreatic islet transplantation is commonly used to treat diabetes. Cell isolation and purification methods can affect the structure and function of the isolated islet cells. Thus, the development of cell isolation techniques that preserve the structure and function of pancreatic islet cells is essential for enabling successful transplantation procedures. The impact of purification procedures on cell function can be assessed by performing ultrastructure and in vivo studies. Thus, the aim of this study was to evaluate the effect of caprine islets purification procedure on islet cell ultrastructure and functional integrity prior to and post-isolation/purification. The islets were isolated from caprine pancreas by using an optimized collagenase XI-S concentration, and the cells were subsequently purified using Euro-Ficoll density gradient. In vitro viability of islets was determined by fluorescein diacetate and propidium iodide staining. Static incubation was used to assess functionality and insulin production by islet cells in culture media when exposed to various levels of glucose. Pancreatic tissues were examined by using light microscopy, fluorescence microscopy, scanning, and transmission electron microscopy. In vivo viability and functionality of caprine islets were assessed by evaluating the transplanted islets in diabetic mice. Insulin assay of glucose-stimulated insulin secretion test showed that the insulin levels increased with increasing concentration of glucose. Thus, purified islets stimulated with high glucose concentration (25 mM) secreted higher levels of insulin (0.542 ± 0.346 μg/L) than the insulin levels (0.361 ± 0.219, 0.303 ± 0.234 μg/L) secreted by exposure to low glucose concentrations (1.67 mM). Furthermore, insulin levels of recipient mice were significantly higher (p 
    Matched MeSH terms: Islets of Langerhans Transplantation/methods*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links