METHODS: Caprine islets were isolated and purified. Islets were handpicked and the diameter of the islets was recorded using light microscopy. Viablility of the islets was analyzed by confocal microscopy. Insulin secretion assay was carried out and analyzed by ELISA.
RESULTS: When tested at 48 h after isolation, these small islets were 29.3% more viable compared to the large-sized islets. Large islets showed a high ratio (P
METHODS: Caprine pancreatic tissues were collected from a local slaughterhouse and prior transported to the laboratory by maintaining the cold chain. Islets were obtained by a collagenase-based digestion and optimized isolation technique. Islet cell purity and viability were determined by dithizone and trypan blue staining, respectively. Islet clusters of different sizes were positively identified by staining methods and demonstrated 90% viability in the culture system. Following static incubation, an in vitro insulin secretion assay was carried out and analyzed by ELISA.
RESULTS: The islets remained satisfactorily viable for 5 days in the culture system following regular media changes. The current study has successfully optimized the isolation, purification and culture maintenance of caprine islets.
CONCLUSION: The successful yield, viability and functionality of islets isolated from the optimized protocol provide promising potential as an alternative source of islets for diabetes and transplantation researches.