Healthcare for elderly people has become a vital issue. The Wearable Health Monitoring System (WHMS) is used to manage and monitor chronic disease in elderly people, postoperative rehabilitation patients and persons with special needs. Location-aware healthcare is achievable as positioning systems and telecommunications have been developed and have fulfilled the technology needed for this kind of healthcare system. In this paper, the researchers propose a Location-Based Mobile Cardiac Emergency System (LMCES) to track the patient's current location when Emergency Medical Services (EMS) has been activated as well as to locate the nearest healthcare unit for the ambulance service. The location coordinates of the patients can be retrieved by GPS and sent to the healthcare centre using GPRS. The location of the patient, cell ID information will also be transmitted to the LMCES server in order to retrieve the nearest health care unit. For the LMCES, we use Dijkstra's algorithm for selecting the shortest path between the nearest healthcare unit and the patient location in order to facilitate the ambulance's path under critical conditions.
Chan Ding training is beneficial to health and emotional wellbeing. More and more people have taken up this practice over the past few years. A major training method of Chan Ding is to focus on the ten Mailuns, i.e., energy points, and to maintain physical stillness. In this article, wireless wearable accelerometers were used to detect physical stillness, and the created physical stillness index (PSI) was also shown. Ninety college students participated in this study. Primarily, accelerometers used on the arms and chest were examined. The results showed that the PSI values on the arms were higher than that of the chest, when participants moved their bodies in three different ways, left-right, anterior-posterior, and hand, movements with natural breathing. Then, they were divided into three groups to practice Chan Ding for approximately thirty minutes. Participants without any Chan Ding experience were in Group I. Participants with one year of Chan Ding experience were in Group II, and participants with over three year of experience were in Group III. The Chinese Happiness Inventory (CHI) was also conducted. Results showed that the PSI of the three groups measured during 20-30 min were 0.123 ± 0.155, 0.012 ± 0.013, and 0.001 ± 0.0003, respectively (p < 0.001 ***). The averaged CHI scores of the three groups were 10.13, 17.17, and 25.53, respectively (p < 0.001 ***). Correlation coefficients between PSI and CHI of the three groups were -0.440, -0.369, and -0.537, respectively (p < 0.01 **). PSI value and the wearable accelerometer that are presently available on the market could be used to evaluate the quality of the physical stillness of the participants during Chan Ding practice.
A target of telehealth is to maintain or improve the health of people outside the normal healthcare infrastructure. A modern paradigm in healthcare, and one which fits perfectly with telehealth, is "person self-monitoring", and this fits with the concept of "personal health record" (PHR). One factor in maintaining health is to monitor physiological parameters; this is of course especially important in people with chronic maladies such as diabetes or heart disease. Parameters to be monitored include blood pressure, pulse rate, temperature, weight, blood glucose, oxygen saturation, electrocardiogram (ECG), etc. So one task within telehealth would be to help monitor an individual's physiological parameters outside of healthcare institutions and store the results in a PHR in a way which is available, comprehensible and beneficial to the individual concerned and to healthcare providers. To date many approaches to this problem have been fragmented - emphasizing only part of the problem - or proprietary and not freely verifiable. We describe a framework to approach this task; it emphasizes the implementation of standards for data acquisition, storage and transmission in order to maximize the compatibility among disparate components, e.g. various PHR systems. Data from mobile biosensors is collected on a smartphone using the IEEE 11073 standard where possible; the data can be stored in a PHR on the phone (using standard formats) or can be converted in real-time into more useful information in the PHR, which is based on the International Classification for Primary Care (ICPC2e). The phone PHR data or information can be uploaded to a central online PHR using either the Wi-Fi or GSM transmission protocol together with the Continuity of Care Record message format (CCR, ASTM E2369).
A force-sensing platform (FSP), sensitive to changes of the postural control system was designed. The platform measured effects of postural perturbations in static and dynamic conditions. This paper describes the implementation of an FSP using force-sensing resistors as sensing elements. Real-time qualitative assessment utilized a rainbow color scale to identify areas with high force concentration. Postprocessing of the logged data provided end-users with quantitative measures of postural control. The objective of this research was to establish the feasibility of using an FSP to test and gauge human postural control. Tests were conducted in eye open and eye close states. Readings obtained were tested for repeatability using a one-way analysis of variance test. The platform gauged postural sway by measuring the area of distribution for the weighted center of applied pressure at the foot. A fuzzy clustering algorithm was applied to identify regions of the foot with repetitive pressure concentration. Potential application of the platform in a clinical setting includes monitoring rehabilitation progress of stability dysfunction. The platform functions as a qualitative tool for initial, on-the-spot assessment, and quantitative measure for postacquisition assessment on balance abilities.
An intelligent gait-phase detection algorithm based on kinematic and kinetic parameters is presented in this paper. The gait parameters do not vary distinctly for each gait phase; therefore, it is complex to differentiate gait phases with respect to a threshold value. To overcome this intricacy, the concept of fuzzy logic was applied to detect gait phases with respect to fuzzy membership values. A real-time data-acquisition system was developed consisting of four force-sensitive resistors and two inertial sensors to obtain foot-pressure patterns and knee flexion/extension angle, respectively. The detected gait phases could be further analyzed to identify abnormality occurrences, and hence, is applicable to determine accurate timing for feedback. The large amount of data required for quality gait analysis necessitates the utilization of information technology to store, manage, and extract required information. Therefore, a software application was developed for real-time acquisition of sensor data, data processing, database management, and a user-friendly graphical-user interface as a tool to simplify the task of clinicians. The experiments carried out to validate the proposed system are presented along with the results analysis for normal and pathological walking patterns.
This paper presents comprehensive insights into mobile patient monitoring systems (MPMSs) from evaluation and benchmarking aspects on the basis of two critical directions. The current evaluation criteria of MPMSs based on the architectural components of MPMSs and possible solutions are discussed. This review highlights four serious issues, namely, multiple evaluation criteria, criterion importance, unmeasurable criteria and data variation, in MPMS benchmarking. Multicriteria decision-making (MCDM) analysis techniques are proposed as effective solutions to solve these issues from a methodological aspect. This methodological aspect involves a framework for benchmarking MPMSs on the basis of MCDM to rank available MPMSs and select a suitable one. The benchmarking framework is discussed in four steps. Firstly, pre-processing and identification procedures are presented. Secondly, the procedure of weight calculation based on the best-worst method (BWM) is described. Thirdly, the development of a benchmark framework by using the VIKOR method is introduced. Lastly, the proposed framework is validated.
The Internet of Things (IoT) has been identified in various applications across different domains, such as in the healthcare sector. IoT has also been recognised for its revolution in reshaping modern healthcare with aspiring wide range prospects, including economical, technological and social. This study aims to establish IoT-based smart home security solutions for real-time health monitoring technologies in telemedicine architecture. A multilayer taxonomy is driven and conducted in this study. In the first layer, a comprehensive analysis on telemedicine, which focuses on the client and server sides, shows that other studies associated with IoT-based smart home applications have several limitations that remain unaddressed. Particularly, remote patient monitoring in healthcare applications presents various facilities and benefits by adopting IoT-based smart home technologies without compromising the security requirements and potentially large number of risks. An extensive search is conducted to identify articles that handle these issues, related applications are comprehensively reviewed and a coherent taxonomy for these articles is established. A total number of (n = 3064) are gathered between 2007 and 2017 for most reliable databases, such as ScienceDirect, Web of Science and Institute of Electrical and Electronic Engineer Xplore databases. Then, the articles based on IoT studies that are associated with telemedicine applications are filtered. Nine articles are selected and classified into two categories. The first category, which accounts for 22.22% (n = 2/9), includes surveys on telemedicine articles and their applications. The second category, which accounts for 77.78% (n = 7/9), includes articles on the client and server sides of telemedicine architecture. The collected studies reveal the essential requirement in constructing another taxonomy layer and review IoT-based smart home security studies. Therefore, IoT-based smart home security features are introduced and analysed in the second layer. The security of smart home design based on IoT applications is an aspect that represents a crucial matter for general occupants of smart homes, in which studies are required to provide a better solution with patient security, privacy protection and security of users' entities from being stolen or compromised. Innovative technologies have dispersed limitations related to this matter. The existing gaps and trends in this area should be investigated to provide valuable visions for technical environments and researchers. Thus, 67 articles are obtained in the second layer of our taxonomy and are classified into six categories. In the first category, 25.37% (n = 17/67) of the articles focus on architecture design. In the second category, 17.91% (n = 12/67) includes security analysis articles that investigate the research status in the security area of IoT-based smart home applications. In the third category, 10.44% (n = 7/67) includes articles about security schemes. In the fourth category, 17.91% (n = 12/67) comprises security examination. In the fifth category, 13.43% (n = 9/67) analyses security protocols. In the final category, 14.92% (n = 10/67) analyses the security framework. Then, the identified basic characteristics of this emerging field are presented and provided in the following aspects. Open challenges experienced on the development of IoT-based smart home security are addressed to be adopted fully in telemedicine applications. Then, the requirements are provided to increase researcher's interest in this study area. On this basis, a number of recommendations for different parties are described to provide insights on the next steps that should be considered to enhance the security of smart homes based on IoT. A map matching for both taxonomies is developed in this study to determine the novel risks and benefits of IoT-based smart home security for real-time remote health monitoring within client and server sides in telemedicine applications.
The development of wireless body area sensor networks is imperative for modern telemedicine. However, attackers and cybercriminals are gradually becoming aware in attacking telemedicine systems, and the black market value of protected health information has the highest price nowadays. Security remains a formidable challenge to be resolved. Intelligent home environments make up one of the major application areas of pervasive computing. Security and privacy are the two most important issues in the remote monitoring and control of intelligent home environments for clients and servers in telemedicine architecture. The personal authentication approach that uses the finger vein pattern is a newly investigated biometric technique. This type of biometric has many advantages over other types (explained in detail later on) and is suitable for different human categories and ages. This study aims to establish a secure verification method for real-time monitoring systems to be used for the authentication of patients and other members who are working in telemedicine systems. The process begins with the sensor based on Tiers 1 and 2 (client side) in the telemedicine architecture and ends with patient verification in Tier 3 (server side) via finger vein biometric technology to ensure patient security on both sides. Multilayer taxonomy is conducted in this research to attain the study's goal. In the first layer, real-time remote monitoring studies based on the sensor technology used in telemedicine applications are reviewed and analysed to provide researchers a clear vision of security and privacy based on sensors in telemedicine. An extensive search is conducted to identify articles that deal with security and privacy issues, related applications are reviewed comprehensively and a coherent taxonomy of these articles is established. ScienceDirect, IEEE Xplore and Web of Science databases are checked for articles on mHealth in telemedicine based on sensors. A total of 3064 papers are collected from 2007 to 2017. The retrieved articles are filtered according to the security and privacy of telemedicine applications based on sensors. Nineteen articles are selected and classified into two categories. The first category, which accounts for 57.89% (n = 11/19), includes surveys on telemedicine articles and their applications. The second category, accounting for 42.1% (n = 8/19), includes articles on the three-tiered architecture of telemedicine. The collected studies reveal the essential need to construct another taxonomy layer and review studies on finger vein biometric verification systems. This map-matching for both taxonomies is developed for this study to go deeply into the sensor field and determine novel risks and benefits for patient security and privacy on client and server sides in telemedicine applications. In the second layer of our taxonomy, the literature on finger vein biometric verification systems is analysed and reviewed. In this layer, we obtain a final set of 65 articles classified into four categories. In the first category, 80% (n = 52/65) of the articles focus on development and design. In the second category, 12.30% (n = 8/65) includes evaluation and comparative articles. These articles are not intensively included in our literature analysis. In the third category, 4.61% (n = 3/65) includes articles about analytical studies. In the fourth category, 3.07% (n = 2/65) comprises reviews and surveys. This study aims to provide researchers with an up-to-date overview of studies that have been conducted on (user/patient) authentication to enhance the security level in telemedicine or any information system. In the current study, taxonomy is presented by explaining previous studies. Moreover, this review highlights the motivations, challenges and recommendations related to finger vein biometric verification systems and determines the gaps in this research direction (protection of finger vein templates in real time), which represent a new research direction in this area.
Hypertension is an important modifiable cardiovascular risk factor and a leading cause of death throughout Asia. Effective prevention and control of hypertension in the region remain a significant challenge despite the availability of several regional and international guidelines. Out-of-office measurement of blood pressure (BP), including home BP monitoring (HBPM), is an important hypertension management tool. Home BP is better than office BP for predicting cardiovascular risk and HBPM should be considered for all patients with office BP ≥ 130/85 mm Hg. It is important that HBPM is undertaken using a validated device and patients are educated about how to perform HBPM correctly. During antihypertensive therapy, monitoring of home BP control and variability is essential, especially in the morning. This is because HBPM can facilitate the choice of individualized optimal therapy. The evidence and practice points in this document are based on the Hypertension Cardiovascular Outcome Prevention and Evidence (HOPE) Asia Network expert panel consensus recommendations for HBPM in Asia.
The aim of this study was to determine the relationship between falls and beat-to-beat blood pressure (BP) variability.Continuous noninvasive BP measurement is as accurate as invasive techniques. We evaluated beat-to-beat supine and standing BP variability (BPV) using time and frequency domain analysis from noninvasive continuous BP recordings.A total of 1218 older adults were selected. Continuous BP recordings obtained were analyzed to determine standard deviation (SD) and root mean square of real variability (RMSRV) for time domain BPV and fast-Fourier transform low frequency (LF), high frequency (HF), total power spectral density (PSD), and LF:HF ratio for frequency domain BPV.Comparisons were performed between 256 (21%) individuals with at least 1 fall in the past 12 months and nonfallers. Fallers were significantly older (P = .007), more likely to be female (P = .006), and required a longer time to complete the Timed-Up and Go test (TUG) and frailty walk test (P ≤ .001). Standing systolic BPV (SBPV) was significantly lower in fallers compared to nonfallers (SBPV-SD, P = .016; SBPV-RMSRV, P = .033; SBPV-LF, P = .003; SBPV-total PSD, P = .012). Nonfallers had significantly higher supine to standing ratio (SSR) for SBPV-SD, SBPV-RMSRV, and SBPV-total PSD (P = .017, P = .013, and P = .009). In multivariate analyses, standing BPV remained significantly lower in fallers compared to nonfallers after adjustment for age, sex, diabetes, frailty walk, and supine systolic BP. The reduction in frequency-domain SSR among fallers was attenuated by supine systolic BP, TUG, and frailty walk.In conclusion, reduced beat-to-beat BPV while standing is independently associated with increased risk of falls. Changes between supine and standing BPV are confounded by supine BP and walking speed.
This paper presents a new approach to prioritize "Large-scale Data" of patients with chronic heart diseases by using body sensors and communication technology during disasters and peak seasons. An evaluation matrix is used for emergency evaluation and large-scale data scoring of patients with chronic heart diseases in telemedicine environment. However, one major problem in the emergency evaluation of these patients is establishing a reasonable threshold for patients with the most and least critical conditions. This threshold can be used to detect the highest and lowest priority levels when all the scores of patients are identical during disasters and peak seasons. A practical study was performed on 500 patients with chronic heart diseases and different symptoms, and their emergency levels were evaluated based on four main measurements: electrocardiogram, oxygen saturation sensor, blood pressure monitoring, and non-sensory measurement tool, namely, text frame. Data alignment was conducted for the raw data and decision-making matrix by converting each extracted feature into an integer. This integer represents their state in the triage level based on medical guidelines to determine the features from different sources in a platform. The patients were then scored based on a decision matrix by using multi-criteria decision-making techniques, namely, integrated multi-layer for analytic hierarchy process (MLAHP) and technique for order performance by similarity to ideal solution (TOPSIS). For subjective validation, cardiologists were consulted to confirm the ranking results. For objective validation, mean ± standard deviation was computed to check the accuracy of the systematic ranking. This study provides scenarios and checklist benchmarking to evaluate the proposed and existing prioritization methods. Experimental results revealed the following. (1) The integration of TOPSIS and MLAHP effectively and systematically solved the patient settings on triage and prioritization problems. (2) In subjective validation, the first five patients assigned to the doctors were the most urgent cases that required the highest priority, whereas the last five patients were the least urgent cases and were given the lowest priority. In objective validation, scores significantly differed between the groups, indicating that the ranking results were identical. (3) For the first, second, and third scenarios, the proposed method exhibited an advantage over the benchmark method with percentages of 40%, 60%, and 100%, respectively. In conclusion, patients with the most and least urgent cases received the highest and lowest priority levels, respectively.
Hypertension is an important public health issue because of its association with a number of significant diseases and adverse outcomes. However, there are important ethnic differences in the pathogenesis and cardio-/cerebrovascular consequences of hypertension. Given the large populations and rapidly aging demographic in Asian regions, optimal strategies to diagnose and manage hypertension are of high importance. Ambulatory blood pressure monitoring (ABPM) is an important out-of-office blood pressure (BP) measurement tool that should play a central role in hypertension detection and management. The use of ABPM is particularly important in Asia due to the specific features of hypertension in Asian patients, including a high prevalence of masked hypertension, disrupted BP variability with marked morning BP surge, and nocturnal hypertension. This HOPE Asia Network document summarizes region-specific literature on the relationship between ABPM parameters and cardiovascular risk and target organ damage, providing a rationale for consensus-based recommendations on the use of ABPM in Asia. The aim of these recommendations is to guide and improve clinical practice to facilitate optimal BP monitoring with the goal of optimizing patient management and expediting the efficient allocation of treatment and health care resources. This should contribute to the HOPE Asia Network mission of improving the management of hypertension and organ protection toward achieving "zero" cardiovascular events in Asia.
There are several risk factors for worse outcomes in patients with coronavirus 2019 disease (COVID-19). Patients with hypertension appear to have a poor prognosis, but there is no direct evidence that hypertension increases the risk of new infection or adverse outcomes independent of age and other risk factors. There is also concern about use of renin-angiotensin system (RAS) inhibitors due to a key role of angiotensin-converting enzyme 2 receptors in the entry of the SARS-CoV-2 virus into cells. However, there is little evidence that use of RAS inhibitors increases the risk of SARS-CoV-2 virus infection or worsens the course of COVID-19. Therefore, antihypertensive therapy with these agents should be continued. In addition to acute respiratory distress syndrome, patients with severe COVID-19 can develop myocardial injury and cytokine storm, resulting in heart failure, arteriovenous thrombosis, and kidney injury. Troponin, N-terminal pro-B-type natriuretic peptide, D-dimer, and serum creatinine are biomarkers for these complications and can be used to monitor patients with COVID-19 and for risk stratification. Other factors that need to be incorporated into patient management strategies during the pandemic include regular exercise to maintain good health status and monitoring of psychological well-being. For the ongoing management of patients with hypertension, telemedicine-based home blood pressure monitoring strategies can facilitate maintenance of good blood pressure control while social distancing is maintained. Overall, multidisciplinary management of COVID-19 based on a rapidly growing body of evidence will help ensure the best possible outcomes for patients, including those with risk factors such as hypertension.
A self-measured home blood pressure (BP)-guided strategy is an effective practical approach to hypertension management. The Asia BP@Home study is the first designed to investigate current home BP control status in different Asian countries/regions using standardized home BP measurements taken with the same validated home BP monitoring device with data memory. We enrolled 1443 medicated hypertensive patients from 15 Asian specialist centers in 11 countries/regions between April 2017 and March 2018. BP was relatively well controlled in 68.2% of patients using a morning home systolic BP (SBP) cutoff of <135 mm Hg, and in 55.1% of patients using a clinic SBP cutoff of <140 mm Hg. When cutoff values were changed to the 2017 AHA/ACC threshold (SBP <130 mm Hg), 53.6% of patients were well controlled for morning home SBP. Using clinic 140 mm Hg and morning home 135 mm Hg SBP thresholds, the proportion of patients with well-controlled hypertension (46%) was higher than for uncontrolled sustained (22%), white-coat (23%), and masked uncontrolled (9%) hypertension, with significant country/regional differences. Home BP variability in Asian countries was high, and varied by country/region. In conclusion, the Asia BP@Home study demonstrated that home BP is relatively well controlled at hypertension specialist centers in Asia. However, almost half of patients remain uncontrolled for morning BP according to new guidelines, with significant country/regional differences. Strict home BP control should be beneficial in Asian populations. The findings of this study are important to facilitate development of health policies focused on reducing cardiovascular complications in Asia.