Displaying all 5 publications

Abstract:
Sort:
  1. Owen-Smith P, Perry R, Wise J, Jamil RZR, Gut L, Sundin G, et al.
    Pest Manag Sci, 2019 Nov;75(11):3050-3059.
    PMID: 30895726 DOI: 10.1002/ps.5421
    BACKGROUND: Air blast sprayers are not optimized for spraying the short statured trees in modern apple orchards, resulting in off target drift and variable coverage. A solid set canopy delivery system (SSCDS) consisting of a microsprayer array distributed throughout the orchard was investigated as a replacement agrochemical application method in this study. SSCDS's have the potential to optimize coverage, rapidly spray applications, and remove the operator and tractor from the orchard.

    RESULTS: Air blast and SSCDS applications were compared using water sensitive paper, bioassays, and pest damage assessments. Pest management and coverage were compared using application volumes of 700 and 795 L ha-1 , respectively. In 2013, adaxial coverage measurements showed no difference between the treatments, but air blast sprayers had higher coverage levels on the abaxial surfaces. There were no significant differences in coverage in 2014. Bioassays using Choristoneura rosaceana fed on leaf discs treated by the SSCDS displayed 95.8% mortality in 2013 and 94.2% mortality in 2014, and air blast treated larval mortality was 95% in 2013 and 100% in 2014. Damage evaluations in both years generally showed no significant differences between the air blast plots and the SSCDS plots, but significant differences between the treated plots and untreated control.

    CONCLUSIONS: The prototype SSCDS was an effective pest management tool in high density apples, and offered a number of advantages over an air blast. Further engineering and research into coverage optimization would offer producers a novel tool for foliar agrochemical applications. © 2019 Society of Chemical Industry.

    Matched MeSH terms: Moths/drug effects*
  2. Ali S, Li Y, Haq IU, Abbas W, Shabbir MZ, Khan MM, et al.
    PLoS One, 2021;16(12):e0260470.
    PMID: 34852006 DOI: 10.1371/journal.pone.0260470
    Helicoverpa armigera (Hub.) is a destructive pest of the tomato (Lycopersicon esculentum Mill) crop in Pakistan. Although insecticides are the primary management strategy used to control H. armigera, most of them are not effective due to considerable toxic residual effects on the fruits. Nonetheless, H. armigera is rapidly evolving resistance against the available pesticides for its management. This situation calls upon the need of alternative management options against the pest. Different plant extracts have been suggested as a viable, environment-friendly option for plant protection with minimal side effects. Furthermore, the plant extracts could also manage the insect species evolving resistance against pesticides. This study evaluated the efficacy of different plant extracts (i.e., Neem seed, turmeric, garlic and marsh pepper) against H. armigera. Furthermore, the impact of the plant extracts on growth and yield of tomato crop was also tested under field conditions. The results revealed that all plant extracts resulted in higher mortality of H. armigera compared to control. Similarly, the highest plant height was observed for the plants treated with the plant extracts compared to untreated plants. Moreover, the highest tomato yield was observed in plants treated with plant extracts, especially with neem seed (21.013 kg/plot) followed by pepper extract (19.25 kg/plot), and garlic extract 18.4 kg/plot) compared to the untreated plants (8.9 kg/plot). It is concluded that plant extracts can be used as eco-friendly approaches for improving tomato yield and resistance management of H. armigera.
    Matched MeSH terms: Moths/drug effects*
  3. Sayyed AH, Omar D, Wright DJ
    Pest Manag Sci, 2004 Aug;60(8):827-32.
    PMID: 15307676
    Resistance to the bacteria-derived insecticides spinosad (Conserve), abamectin (Vertimec), Bacillus thuringiensis var kurstaki (Btk) (Dipel), B thuringiensis var aizawai (Bta) (Xentari), B thuringiensis crystal endotoxins Cry1Ac and Cry1Ca, and to the synthetic insecticide fipronil was estimated in a freshly-collected field population (CH1 strain) of Plutella xylostella (L) from the Cameron Highlands, Malaysia. Laboratory bioassays at G1 indicated significant levels of resistance to spinosad, abamectin, Cry1Ac, Btk, Cry1Ca, fipronil and Bta when compared with a laboratory insecticide-susceptible population. Logit regression analysis of F1 reciprocal crosses indicated that resistance to spinosad in the CH1 population was inherited as a co-dominant trait. At the highest dose of spinosad tested, resistance was close to completely recessive, while at the lowest dose it was incompletely dominant. A direct test of monogenic inheritance based on a back-cross of F1 progeny with CH1 suggested that resistance to spinosad was controlled by a single locus.
    Matched MeSH terms: Moths/drug effects
  4. Sayyed AH, Moores G, Crickmore N, Wright DJ
    Pest Manag Sci, 2008 Aug;64(8):813-9.
    PMID: 18383197 DOI: 10.1002/ps.1570
    Bacillus thuringiensis Berliner (Bt) crystal (Cry) toxins are expressed in various transgenic crops and are also used as sprays in integrated pest management and organic agricultural systems. The diamondback moth (Plutella xylostella L.) is a major worldwide pest of crucifer crops and one that has readily acquired field resistance to a broad range of insecticides.
    Matched MeSH terms: Moths/drug effects*
  5. Sayyed AH, Raymond B, Ibiza-Palacios MS, Escriche B, Wright DJ
    Appl Environ Microbiol, 2004 Dec;70(12):7010-7.
    PMID: 15574894
    The long-term usefulness of Bacillus thuringiensis Cry toxins, either in sprays or in transgenic crops, may be compromised by the evolution of resistance in target insects. Managing the evolution of resistance to B. thuringiensis toxins requires extensive knowledge about the mechanisms, genetics, and ecology of resistance genes. To date, laboratory-selected populations have provided information on the diverse genetics and mechanisms of resistance to B. thuringiensis, highly resistant field populations being rare. However, the selection pressures on field and laboratory populations are very different and may produce resistance genes with distinct characteristics. In order to better understand the genetics, biochemical mechanisms, and ecology of field-evolved resistance, a diamondback moth (Plutella xylostella) field population (Karak) which had been exposed to intensive spraying with B. thuringiensis subsp. kurstaki was collected from Malaysia. We detected a very high level of resistance to Cry1Ac; high levels of resistance to B. thuringiensis subsp. kurstaki Cry1Aa, Cry1Ab, and Cry1Fa; and a moderate level of resistance to Cry1Ca. The toxicity of Cry1Ja to the Karak population was not significantly different from that to a standard laboratory population (LAB-UK). Notable features of the Karak population were that field-selected resistance to B. thuringiensis subsp. kurstaki did not decline at all in unselected populations over 11 generations in laboratory microcosm experiments and that resistance to Cry1Ac declined only threefold over the same period. This finding may be due to a lack of fitness costs expressed by resistance strains, since such costs can be environmentally dependent and may not occur under ordinary laboratory culture conditions. Alternatively, resistance in the Karak population may have been near fixation, leading to a very slow increase in heterozygosity. Reciprocal genetic crosses between Karak and LAB-UK populations indicated that resistance was autosomal and recessive. At the highest dose of Cry1Ac tested, resistance was completely recessive, while at the lowest dose, it was incompletely dominant. A direct test of monogenic inheritance based on a backcross of F1 progeny with the Karak population suggested that resistance to Cry1Ac was controlled by a single locus. Binding studies with 125I-labeled Cry1Ab and Cry1Ac revealed greatly reduced binding to brush border membrane vesicles prepared from this field population.
    Matched MeSH terms: Moths/drug effects*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links