METHODS: The pterygium screening system was tested on two normal eye databases (UBIRIS and MILES) and two pterygium databases (Australia Pterygium and Brazil Pterygium). This system comprises four modules: (i) a preprocessing module to enhance the pterygium tissue using HSV-Sigmoid; (ii) a segmentation module to differentiate the corneal region and the pterygium tissue; (iii) a feature extraction module to extract corneal features using circularity ratio, Haralick's circularity, eccentricity, and solidity; and (iv) a classification module to identify the presence or absence of pterygium. System performance was evaluated using support vector machine (SVM) and artificial neural network.
RESULTS: The three-step frame differencing technique was introduced in the corneal segmentation module. The output image successfully covered the region of interest with an average accuracy of 0.9127. The performance of the proposed system using SVM provided the most promising results of 88.7%, 88.3%, and 95.6% for sensitivity, specificity, and area under the curve, respectively.
CONCLUSION: A basic platform for computer-aided pterygium screening was successfully developed using the proposed modules. The proposed system can classify pterygium and non-pterygium cases reasonably well. In our future work, a standard grading system will be developed to identify the severity of pterygium cases. This system is expected to increase the awareness of communities in rural areas on pterygium.