Displaying all 8 publications

Abstract:
Sort:
  1. Damanik N, Ong HC, Tong CW, Mahlia TMI, Silitonga AS
    Environ Sci Pollut Res Int, 2018 Jun;25(16):15307-15325.
    PMID: 29721797 DOI: 10.1007/s11356-018-2098-8
    Biodiesels have gained much popularity because they are cleaner alternative fuels and they can be used directly in diesel engines without modifications. In this paper, a brief review of the key studies pertaining to the engine performance and exhaust emission characteristics of diesel engines fueled with biodiesel blends, exhaust aftertreatment systems, and low-temperature combustion technology is presented. In general, most biodiesel blends result in a significant decrease in carbon monoxide and total unburned hydrocarbon emissions. There is also a decrease in carbon monoxide, nitrogen oxide, and total unburned hydrocarbon emissions while the engine performance increases for diesel engines fueled with biodiesels blended with nano-additives. The development of automotive technologies, such as exhaust gas recirculation systems and low-temperature combustion technology, also improves the thermal efficiency of diesel engines and reduces nitrogen oxide and particulate matter emissions.
    Matched MeSH terms: Nitrogen Oxides/analysis*
  2. Mohd Jaafar MN, Eldrainy YA, Mat Ali MF, Wan Omar WZ, Mohd Hizam MF
    Environ Sci Technol, 2012 Feb 21;46(4):2445-50.
    PMID: 22296110 DOI: 10.1021/es2025005
    The problems of global warming and the unstable price of petroleum oils have led to a race to develop environmentally friendly biofuels, such as palm oil or ethanol derived from corn and sugar cane. Biofuels are a potential replacement for fossil fuel, since they are renewable and environmentally friendly. This paper evaluates the combustion performance and emission characteristics of Refined, Bleached, and Deodorized Palm Oil (RBDPO)/diesel blends B5, B10, B15, B20, and B25 by volume, using an industrial oil burner with and without secondary air. Wall temperature profiles along the combustion chamber axis were measured using a series of thermocouples fitted axially on the combustion chamber wall, and emissions released were measured using a gas analyzer. The results show that RBDPO blend B25 produced the maximum emission reduction of 56.9% of CO, 74.7% of NOx, 68.5% of SO(2), and 77.5% of UHC compared to petroleum diesel, while air staging (secondary air) in most cases reduces the emissions further. However, increasing concentrations of RBDPO in the blends also reduced the energy released from the combustion. The maximum wall temperature reduction was 62.7% for B25 at the exit of the combustion chamber.
    Matched MeSH terms: Nitrogen Oxides/analysis
  3. Ahmad MA, Yahya WJ, Ithnin AM, Hasannuddin AK, Bakar MAA, Fatah AYA, et al.
    Environ Sci Pollut Res Int, 2018 Aug;25(24):24266-24280.
    PMID: 29948709 DOI: 10.1007/s11356-018-2492-2
    Non-surfactant water-in-diesel emulsion fuel (NWD) is an alternative fuel that has the potential to reduce major exhaust emissions while simultaneously improving the combustion performance of a diesel engine. NWD comprises of diesel fuel and water (about 5% in volume) without any additional surfactants. This emulsion fuel is produced through an in-line mixing system that is installed very close to the diesel engine. This study focuses mainly on the performance and emission of diesel engine fuelled with NWD made from different water sources. The engine used in this study is a direct injection diesel engine with loads varying from 1 to 4 kW. The result shows that NWD made from tap water helps the engine to reduce nitrogen oxide (NOx) by 32%. Rainwater reduced it by 29% and seawater by 19%. In addition, all NWDs show significant improvements in engine performance as compared to diesel fuel, especially in the specific fuel consumption that indicates an average reduction of 6%. It is observed that all NWDs show compelling positive effects on engine performance, which is caused by the optimum water droplet size inside NWD.
    Matched MeSH terms: Nitrogen Oxides/analysis
  4. Sugeng DA, Yahya WJ, Ithnin AM, Abdul Rashid MA, Mohd Syahril Amri NS, Abd Kadir H, et al.
    Environ Sci Pollut Res Int, 2018 Sep;25(27):27214-27224.
    PMID: 30030755 DOI: 10.1007/s11356-018-2760-1
    The focus of this work is to investigate the emission characteristics of a stationary diesel engine while utilizing an emulsion fuel from a novel preparation process. The emulsion preparation was performed in real time without using any surfactant. Instead of mechanically breaking the water down into droplets, the water is delivered thermally, by changing its phase from gas to liquid. Steam is used in this proposed process, where it will be converted into suspended water droplets once it meets colder diesel. The product is called steam-generated water-in-diesel emulsion fuel (S/D). The method is expected to reduce the moving components of a previous surfactant-less system; therefore, reducing costs and increasing the system reliability. The emission characteristics of S/D were compared with EURO 2 diesel (D2), and a conventional emulsion denoted as E10. E10 was prepared using 10% water (volumetric) and SPAN80 as a surfactant. The emission characterizations were carried out based on the exhaust gas of a single cylinder naturally aspirated CI engine fueled with D2, S/D, and E10. Compared to D2, both emulsions significantly reduced the emissions of nitrogen oxides (NOx) (E10 max ↓58.0%, S/D max ↓40.0%) and particulate matter (PM) (E10 max ↓20.0%, S/D max ↓57.0%).
    Matched MeSH terms: Nitrogen Oxides/analysis*
  5. Adam IK, Heikal M, Aziz ARA, Yusup S
    Environ Sci Pollut Res Int, 2018 Oct;25(28):28500-28516.
    PMID: 30088249 DOI: 10.1007/s11356-018-2863-8
    The present work analyzes the effect of antioxidants on engine combustion performance of a multi-cylinder diesel engine fueled with PB30 and PB50 (30 and 50 vol.% palm biodiesel (PB)). Four antioxidants namely N,N'-diphenyl-1,4-phenylenediamine (DPPD), N-phenyl-1,4-phenylenediamine (NPPD), 2(3)-tert-Butyl-4-methoxyphenol (BHA), and 2-tert-butylbenzene-1,4-diol (TBHQ) were added at concentrations of 1000 and 2000 ppm to PB30 and PB50. TBHQ showed the highest activity in increasing oxidation stability in both PB30 and PB50 followed by BHA, DPPD, and NPPD respectively, without any negative effect on physical properties. Compared to diesel fuel, PB blends showed 4.61-6.45% lower brake power (BP), 5.90-8.69% higher brake specific fuel consumption (BSFC), 9.64-11.43% higher maximum in cylinder pressure, and 7.76-12.51% higher NO emissions. Carbon monoxide (CO), hydrocarbon (HC), and smoke opacity were reduced by 36.78-43.56%, 44.12-58.21%, and 42.59-63.94%, respectively, than diesel fuel. The start of combustion angles (SOC) of PB blends was - 13.2 to - 15.6 °CA BTDC, but the combustion delays were 5.4-7.8 °CA short compared to diesel fuel which were - 10 °CA BTDC and 11°CA respectively. Antioxidant fuels of PB showed higher BP (1.81-5.32%), CO (8.41-24.60%), and HC (13.51-37.35%) with lower BSFC (1.67-7.68%), NO (4.32-11.53%), maximum in cylinder pressure (2.33-4.91%) and peak heat release rates (HRR) (3.25-11.41%) than baseline fuel of PB. Similar SOC of - 13 to - 14 °CA BTDC was observed for PB blended fuels and antioxidants. It can be concluded that antioxidants' addition is effective in increasing the oxidation stability and in controlling the NOx emissions of palm biodiesel fuelled diesel engine.
    Matched MeSH terms: Nitrogen Oxides/analysis*
  6. Monirul IM, Masjuki HH, Kalam MA, Zulkifli NWM, Shancita I
    Environ Sci Pollut Res Int, 2017 Aug;24(22):18479-18493.
    PMID: 28646309 DOI: 10.1007/s11356-017-9333-6
    The aim of this study is to investigate the effect of the polymethyl acrylate (PMA) additive on the formation of particulate matter (PM) and nitrogen oxide (NOX) emission from a diesel coconut and/or Calophyllum inophyllum biodiesel-fueled engine. The physicochemical properties of 20% of coconut and/or C. inophyllum biodiesel-diesel blend (B20), 0.03 wt% of PMA with B20 (B20P), and diesel fuel were measured and compared to ASTM D6751, D7467, and EN 14214 standard. The test results showed that the addition of PMA additive with B20 significantly improves the cold-flow properties such as pour point (PP), cloud point (CP), and cold filter plugging point (CFPP). The addition of PMA additives reduced the engine's brake-specific energy consumption of all tested fuels. Engine emission results showed that the additive-added fuel reduce PM concentration than B20 and diesel, whereas the PM size and NOX emission both increased than B20 fuel and baseline diesel fuel. Also, the effect of adding PMA into B20 reduced Carbon (C), Aluminum (Al), Potassium (K), and volatile materials in the soot, whereas it increased Oxygen (O), Fluorine (F), Zinc (Zn), Barium (Ba), Chlorine (Cl), Sodium (Na), and fixed carbon. The scanning electron microscope (SEM) results for B20P showed the lower agglomeration than B20 and diesel fuel. Therefore, B20P fuel can be used as an alternative to diesel fuel in diesel engines to lower the harmful emissions without compromising the fuel quality.
    Matched MeSH terms: Nitrogen Oxides/analysis*
  7. Alwi A, Zulkifli NW, Sukiman NL, Yusoff A, Zakaria Z, Jamshaid M, et al.
    Environ Sci Pollut Res Int, 2019 Apr;26(12):11815-11826.
    PMID: 30811022 DOI: 10.1007/s11356-019-04603-6
    The availability of natural energy resources and the environmental issues are the most significant issues that are often highlighted by the world communities. With regard to these problems, isobutanol is a higher chain alcohol with four carbons which can be derived from biomass resources and it is potential to become an alternative fuel source besides the biodiesel for a diesel engine. The aim of this study is to evaluate the effect of isobutanol with Calophyllum inophyllum methyl ester and diesel as the ternary blend on physicochemical properties, engine performance, and emission characteristics. Five different fuel blends containing Calophyllum inophyllum biodiesel and isobutanol were tested on a single-cylinder direct injection diesel engine at different engine load of brake mean effective pressure. The physicochemical properties of the fuel blends were measured and then compared with neat diesel. The results indicate that the blend containing isobutanol and CIME gives a slight increase in BSEC and EGT and a minimal drop in BTE as compared to that of neat diesel. Besides that, the tested blends show a reduction of carbon monoxide and unburned hydrocarbon emissions. Meanwhile, all the fuel blends show a minimal increase in carbon dioxide and nitrogen oxides emissions, compared to that of neat diesel. Isobutanol can be proved as a preferred substitute for biodiesel and diesel fuels to achieve desired engine performance and emissions level.
    Matched MeSH terms: Nitrogen Oxides/analysis
  8. Soyiri IN, Reidpath DD, Sarran C
    Int J Biometeorol, 2013 Jul;57(4):569-78.
    PMID: 22886344 DOI: 10.1007/s00484-012-0584-0
    Asthma is a chronic condition of great public health concern globally. The associated morbidity, mortality and healthcare utilisation place an enormous burden on healthcare infrastructure and services. This study demonstrates a multistage quantile regression approach to predicting excess demand for health care services in the form of asthma daily admissions in London, using retrospective data from the Hospital Episode Statistics, weather and air quality. Trivariate quantile regression models (QRM) of asthma daily admissions were fitted to a 14-day range of lags of environmental factors, accounting for seasonality in a hold-in sample of the data. Representative lags were pooled to form multivariate predictive models, selected through a systematic backward stepwise reduction approach. Models were cross-validated using a hold-out sample of the data, and their respective root mean square error measures, sensitivity, specificity and predictive values compared. Two of the predictive models were able to detect extreme number of daily asthma admissions at sensitivity levels of 76 % and 62 %, as well as specificities of 66 % and 76 %. Their positive predictive values were slightly higher for the hold-out sample (29 % and 28 %) than for the hold-in model development sample (16 % and 18 %). QRMs can be used in multistage to select suitable variables to forecast extreme asthma events. The associations between asthma and environmental factors, including temperature, ozone and carbon monoxide can be exploited in predicting future events using QRMs.
    Matched MeSH terms: Nitrogen Oxides/analysis
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links