This paper deals with the performance and emission analysis of a multicylinder diesel engine using biodiesel along with an in-depth analysis of the engine heat losses in different subsystems followed by the energy balance of all the energy flows from the engine. Energy balance analysis allows the designer to appraise the internal energy variations of a thermodynamic system as a function of ''energy flows" across the control volume as work or heat and also the enthalpies associated with the energy flows which are passing through these boundaries. Palm and coconut are the two most potential biodiesel feed stocks in this part of the world. The investigation was conducted in a four-cylinder diesel engine fuelled with 10% and 20% blends of palm and coconut biodiesels and compared with B5 at full load condition and in the speed range of 1000 to 4000 RPM. Among the all tested blends, palm blends seemed more promising in terms of engine performance, emission, and heat losses. The influence of heat losses on engine performance and emission has been discussed thoroughly in this paper.
Size-segregated airborne fine (PM2.1) and coarse (PM>2.1) particulates were measured in an urban environment over central Indo-Gangetic plain in between 2015 and 2018 to get insights into its nature, chemistry and sources. Mean (±1σ) concentration of PM2.1 was 98 (±76) μgm-3 with a seasonal high during winter (DJF, 162 ± 71 μgm-3) compared to pre-monsoon specific high in PM>2.1 (MAMJ, 177 ± 84 μgm-3) with an annual mean of 170 (±69) μgm-3. PM2.1 was secondary in nature with abundant secondary inorganic aerosols (20% of particulate mass) and water-soluble organic carbon (19%) against metal enriched (25%) PM>2.1, having robust signature of resuspensions from Earth's crust and road dust. Ammonium-based neutralization of particulate acidity was essentially in PM2.1 with an indication of predominant H2SO4 neutralization in bisulfate form compared to Ca2+ and Mg2+-based neutralization in PM>2.1. Molecular distribution of n-alkanes homologues (C17-C35) showed Cmax at C23 (PM2.1) and C18 (PM>2.1) with weak dominance of odd-numbered n-alkanes. Carbon preference index of n-alkanes was close to unity (PM2.1: 1.4 ± 0.3; PM>2.1: 1.3 ± 0.4). Fatty acids (C12-C26) were characterized with predominance of even carbon with Cmax at n-hexadecanoic acid (C16:0). Low to high molecular weight fatty acid ratio ranged from 2.0 (PM>2.1) to 5.6 (PM2.1) with vital signature of anthropogenic emissions. Levoglucosan was abundant in PM2.1 (758 ± 481 ngm-3) with a high ratio (11.6) against galactosan, emphasizing robust contribution from burning of hardwood and agricultural residues. Receptor model resolves secondary aerosols and biomass burning emissions (45%) as the most influential sources of PM2.1 whereas, crustal (29%) and secondary aerosols (29%) were found responsible for PM>2.1; with significant variations among the seasons.
Plant (vegetable) oil has been evaluated as a substitute for mineral oil-based lubricants because of its natural and environmentally friendly characteristics. Availability of vegetable oil makes it a renewable source of bio-oils. Additionally, vegetable oil-based lubricants have shown potential for reducing hydrocarbon and carbon dioxide (CO2) emissions when utilized in internal combustion (IC) engines and industrial operations. In this study, sunflower oil was investigated to study its lubricant characteristics under different loads using the four-ball tribometer and the exhaust emissions were tested using a four-stroke, single-cylinder diesel engine. All experimental works conformed to American Society for Testing and Materials standard (ASTM D4172-B). Under low loads, sunflower oil showed adequate tribological characteristics (antifriction and antiwear) compared with petroleum oil samples. The results also demonstrated that the sunflower oil-based lubricant was more effective in reducing the emission levels of carbon monoxide (CO), CO2, and hydrocarbons under different test conditions. Therefore, sunflower oil has the potential to be used as lubricant of mating components.Implications: An experimental investigation of the characteristics of nonedible sunflower oil tribological behaviors and potential as a renewable source for biofluids alternative to the petroleum oils was carried out. The level of emissions of a four-stroke, single-cylinder diesel engine using sunflower oil as a biolubricant was evaluated.
This study aims to determine the inorganic and carbonaceous components depending on the seasonal variation and size distribution of urban air particles in Kuala Lumpur. Different fractions of particulate matter (PM) were measured using a Nanosampler from 17 February 2017 until 27 November 2017. The water-soluble inorganic ions (WSIIs) and carbonaceous components in all samples were analysed using ion chromatography and carbon analyser thermal/optical reflectance, respectively. Total PM concentration reached its peak during the southwest (SW) season (70.99 ± 6.04 μg/m3), and the greatest accumulation were observed at PM0.5-1.0 (22%-30%, 9.55 ± 1.03 μg/m3) and PM2.5-10 (22%-25%, 10.34 ± 0.81 μg/m3). SO42-, NO3- and NH4+ were major contributors of WSIIs, and their formation was favoured mainly during SW season (80.5% of total ions). PM0.5-1.0 and PM2.5-10 exhibited the highest percentage of WSII size distribution, accounted for 28.4% and 13.5% of the total mass, respectively. The average contribution of carbonaceous species (OC + EC) to total carbonaceous concentrations were higher in PM0.5-1.0 (35.2%) and PM2.5-10 (26.6%). Ultrafine particles (PM<0.1) consistently indicated that the sources were from vehicle emission while the SW season was constantly dominated by biomass burning sources. Using the positive matrix factorization (PMF) model, secondary inorganic aerosol and biomass burning (30.3%) was known as a significant source of overall PM. As a conclusion, ratio and source apportionment indicate the mixture of biomass burning, secondary inorganic aerosols and motor vehicle contributed to the size-segregated PM and seasonal variation of inorganic and carbonaceous components of urban air particles.
Road transport contributes over 70% of air pollution in urban areas and is the second largest contributor to the total carbon dioxide emissions in Malaysia at 21% in 2016. Transport-related air pollutants (TRAPs) such as NOx, SO2, CO and particulate matter (PM) pose significant threats to the urban population's health. Malaysia has targeted to deploy 885,000 EV cars on the road by 2030 in the Low Carbon Mobility Blueprint (LCMB). This study aims to quantify the health co-benefits of electric vehicle adoption from their impacts on air quality in Malaysia. Two EV uptake projections, i.e. LCMB and Revised EV Adoption (REVA) projections, and five electricity generation mix scenarios were modelled up to 2040. We used comparative health risk assessment to estimate the potential changes in mortality and burden of diseases (BoD) from the emissions in each scenario. Intake fractions and exposure-risk functions were used to calculate the burden from respiratory diseases (PM2.5, NOx, SO2, CO), cardiovascular diseases and lung cancer (PM2.5). Results showed that along with a net reduction of carbon emissions across all scenarios, there could be reduced respiratory mortality from NOx by 10,200 mortality (176,200 DALYs) and SO2 by 2600 mortality (45,400 DALYs) per year in 2040. However, there could also be additional 719 mortality (9900 DALYs) per year from PM2.5 and 329 mortality (5600 DALYs) from CO per year. The scale of reduction in mortality and BoD from NOx and SO2 are significantly larger than the scale of increase from PM2.5 and CO, indicating potential net positive health impacts from the EV adoption in the scenarios. The health cost savings from the reduced BoD of respiratory mortality could reach up to RM 7.5 billion per year in 2040. In conclusion, EV is a way forward in promoting a healthy and sustainable future transport in Malaysia.
With the synchronous development of highway construction and the urban economy, automobiles have entered thousands of households as essential means of transportation. This paper reviews the latest research progress in using phytoremediation technology to remediate the environmental pollution caused by automobile exhaust in recent years, including the prospects for stereoscopic forestry. Currently, most automobiles on the global market are internal combustion vehicles using fossil energy sources as the primary fuel, such as gasoline, diesel, and liquid or compressed natural gas. The composition of vehicle exhaust is relatively complex. When it enters the atmosphere, it is prone to a series of chemical reactions to generate various secondary pollutants, which are very harmful to human beings, plants, animals, and the eco-environment. Despite improving the automobile fuel quality and installing exhaust gas purification devices, helping to reduce air pollution, the treatment costs of these approaches are expensive and cannot achieve zero emissions of automobile exhaust pollutants. The purification of vehicle exhaust by plants is a crucial way to remediate the environmental pollution caused by automobile exhaust and improve the environment along the highway by utilizing the ecosystem's self-regulating ability. Therefore, it has become a global trend to use phytoremediation technology to restore the automobile exhaust pollution. Now, there is no scientific report or systematic review about how plants absorb vehicle pollutants. The screening and configuration of suitable plant species is the most crucial aspect of successful phytoremediation. The mechanisms of plant adsorption, metabolism, and detoxification are reviewed in this paper to address the problem of automobile exhaust pollution.
The purpose of this study is to investigate the performance, emission and combustion characteristics of a four-cylinder common-rail turbocharged diesel engine fuelled with Jatropha curcas biodiesel-diesel blends. A kernel-based extreme learning machine (KELM) model is developed in this study using MATLAB software in order to predict the performance, combustion and emission characteristics of the engine. To acquire the data for training and testing the KELM model, the engine speed was selected as the input parameter, whereas the performance, exhaust emissions and combustion characteristics were chosen as the output parameters of the KELM model. The performance, emissions and combustion characteristics predicted by the KELM model were validated by comparing the predicted data with the experimental data. The results show that the coefficient of determination of the parameters is within a range of 0.9805-0.9991 for both the KELM model and the experimental data. The mean absolute percentage error is within a range of 0.1259-2.3838. This study shows that KELM modelling is a useful technique in biodiesel production since it facilitates scientists and researchers to predict the performance, exhaust emissions and combustion characteristics of internal combustion engines with high accuracy.
The growing effects of climate change on Malaysia's coastal ecology heighten worries about air pollution, specifically caused by urbanization and industrial activity in the maritime sector. Trucks and vessels are particularly noteworthy for their substantial contribution to gas emissions, including nitrogen dioxide (NO2), which is the primary gas released in port areas. The application of advanced analysis techniques was spurred by the air pollution resulting from the combustion of fossil fuels such as fuel oil, natural gas and gasoline in vessels. The study utilized satellite photos captured by the Tropospheric Monitoring Instrument (TROPOMI) on the Sentinel-5P satellite to evaluate the levels of NO2 gas pollution in Malaysia's port areas and exclusive economic zone. Before the COVID-19 pandemic, unrestricted gas emissions led to persistently high levels of NO2 in the analyzed areas. The temporary cessation of marine industry operations caused by the pandemic, along with the halting of vessels to prevent the spread of COVID-19, resulted in a noticeable decrease in NO2 gas pollution. In light of these favourable advancements, it is imperative to emphasize the need for continuous investigation and collaborative endeavours to further alleviate air contamination in Malaysian port regions, while simultaneously acknowledging the wider consequences of climate change on the coastal ecology. The study underscores the interdependence of air pollution, maritime activities and climate change. It emphasizes the need for comprehensive strategies that tackle both immediate environmental issues and the long-term sustainability and resilience of coastal ecosystems in the context of global climate challenges.
Exploring new renewable energy sources as a substitute of petroleum reserves is necessary due to fulfilling the oncoming energy needs for industry and transportation systems. In this quest, a lot of research is going on to expose different kinds of new biodiesel sources. The non-edible oil from candlenut possesses the potential as a feedstock for biodiesel production. The present study aims to produce biodiesel from crude candlenut oil by using two-step transesterification process, and 10%, 20%, and 30% of biodiesel were mixed with diesel fuel as test blends for engine testing. Fourier transform infrared (FTIR) and gas chromatography (GC) were performed and analyzed to characterize the biodiesel. Also, the fuel properties of biodiesel and its blends were measured and compared with the specified standards. The thermal stability of the fuel blends was measured by thermogravimetric analysis (TGA) and differential scan calorimetry (DSC) analysis. Engine characteristics were measured in a Yanmar TF120M single cylinder direct injection (DI) diesel engine. Biodiesel produced from candlenut oil contained 15% free fatty acid (FFA), and two-step esterification and transesterification were used. FTIR and GC remarked the biodiesels' existing functional groups and fatty acid methyl ester (FAME) composition. The thermal analysis of the biodiesel blends certified about the blends' stability regarding thermal degradation, melting and crystallization temperature, oxidative temperature, and storage stability. The brake power (BP), brake specific fuel consumption (BSFC), and brake thermal efficiency (BTE) of the biodiesel blends decreased slightly with an increasing pattern of nitric oxide (NO) emission. However, the hydrocarbon (HC) and carbon monoxides (CO) of biodiesel blends were found decreased.
Biodiesels have gained much popularity because they are cleaner alternative fuels and they can be used directly in diesel engines without modifications. In this paper, a brief review of the key studies pertaining to the engine performance and exhaust emission characteristics of diesel engines fueled with biodiesel blends, exhaust aftertreatment systems, and low-temperature combustion technology is presented. In general, most biodiesel blends result in a significant decrease in carbon monoxide and total unburned hydrocarbon emissions. There is also a decrease in carbon monoxide, nitrogen oxide, and total unburned hydrocarbon emissions while the engine performance increases for diesel engines fueled with biodiesels blended with nano-additives. The development of automotive technologies, such as exhaust gas recirculation systems and low-temperature combustion technology, also improves the thermal efficiency of diesel engines and reduces nitrogen oxide and particulate matter emissions.
With the rising concern about climate change, there has been an increased public awareness that has resulted in new government policies to support scientific research for mitigating these problems. Malaysia is among the major energy-intense countries and is under an excessive burden to advance its energy efficiency and to also work towards the reduction of its carbon emission. Plug-in hybrid electric vehicles (PHEVs) have the potential to lessen the carbon emission and gasoline consumption in order to alleviate environmental problems. Most of the energy problems linked to the increasing transportation pollution are now being reduced with the solution of the adoption of PHEVs. PHEVs are seen as a solution to cut carbon emission, which prevents environmental damages. Furthermore, PHEVs' driving range and performance can be comparable to the other hybrid vehicles as well as the conventional IC engines that have gasoline and diesel tanks. Thus, many efforts are being initiated to promote the use of PHEVs as an innovative and affordable transportation system. In order to achieve making the consumers aware of the adoption of PHEVs, we used a model which is based on the extended theory of planned behavior (TPB). This review is based on the factors affecting the adoption of PHEVs among Malaysian consumers. The model takes into account the ten key features that influence the adoption of PHEVs, such as environmental concern, personal norm, attitude, vehicle ownership costs, driving range, charging time, intention, subjective norm, perceived behavioral control, and personal norm. All these constructs are drivers towards the adoption of PHEVs. These factors affect the relationship between the adoption of PHEVs and how consumers intend to protect the environment. This review is based on improving how the "attitude-action" gap is understood as it is an important element for further studies on PHEVs. The aim of the research is to come up with a framework that examines how to modify the consumer's environmental concerns in acquiring PHEVs. This will pave the way for more academic research and future works that can emphasize how to obtain empirical results. The authors' recommendation is that, before a consumer's behavior is assessed and considered, an observation of the current technology is needed with methods and knowledge of the existing technology adoption aspect.
In light of a slow buildup in CO2 emissions since the recovery, this paper revisits the relationship between CO2 emissions and the US economy using a nonlinear autoregressive distributed lag model, in which the determinants are identified through an expanded real business cycle model. We find convincing evidence that CO2 emissions decline more rapidly during recessions than increase during expansions over the long run. Of all determinants considered, long-run asymmetry is fostered once vehicle miles traveled is controlled. This calls for a greater attention to public transportation development and vehicle miles traveled tax for slowing down stock buildup of CO2 emissions during good times.
In an attempt to mitigate the effects of extreme natural events caused by greenhouse gases (GHGs), a significant number of researchers and environmentalists have repeatedly stressed the importance of implementing protective measures, including the promotion of green consumption. This study examined the elements that motivated the willingness and the practice of green behavior (GB) among low-income households in coastal Peninsular Malaysia. To meet the research objectives, this study adopted the survey questionnaire method to collect data from 380 low-income households. The findings revealed that self-efficacy (SE) and environmental concerns (EC) have statistically significant effects on the attitude toward green products (ATT), while subjective norms (SN) and perceived behavioral control (PBC) have influence on the intention of green vehicles. Eventually, the study discovered the effects of the intention to adopt green vehicle on green vehicle adoption behavior. Hence, the findings of this study provide new insights for policymakers in Malaysia to place more emphasis on improving consumer attitudes, social standards, and PBC, which will ultimately contribute to the adoption of environment-friendly vehicles. In addition, car manufacturers should support this program by designing products and options that would encourage those in the low-income group to replace their conventional vehicles with green alternatives in Malaysia.
This comprehensive paper conducts an in-depth review of personal exposure and air pollutant levels within the microenvironments of Asian city transportation. Our methodology involved a systematic analysis of an extensive body of literature from diverse sources, encompassing a substantial quantity of studies conducted across multiple Asian cities. The investigation scrutinizes exposure to various pollutants, including particulate matters (PM10, PM2.5, and PM1), carbon dioxide (CO2), formaldehyde (CH2O), and total volatile organic compounds (TVOC), during transportation modes such as car travel, bus commuting, walking, and train rides. Notably, our review reveals a predominant focus on PM2.5, followed by PM10, PM1, CO2, and TVOC, with limited attention given to CH2O exposure. Across the spectrum of Asian cities and transportation modes, exposure concentrations exhibited considerable variability, a phenomenon attributed to a multitude of factors. Primary sources of exposure encompass motor vehicle emissions, traffic dynamics, road dust, and open bus doors. Furthermore, our findings illuminate the influence of external environments, particularly in proximity to train stations, on pollutant levels inside trains. Crucial factors affecting exposure encompass ventilation conditions, travel-specific variables, seat locations, vehicle types, and meteorological influences. The culmination of this rigorous review underscores the need for standardized measurements, enhanced ventilation systems, air filtration mechanisms, the adoption of clean energy sources, and comprehensive public education initiatives aimed at reducing pollutant exposure within city transportation microenvironments. Importantly, our study contributes to the growing body of knowledge surrounding this subject, offering valuable insights for policymakers and researchers dedicated to advancing air quality standards and safeguarding public health.
Current study presents RSM based optimized production of biodiesel from palm oil using chemical and enzymatic transesterification. The emission behavior of biodiesel and its blends, namely, POB-5, POB-20, POB-40, POB-50, POB-80, and POB-100 was examined using diesel engine (equipped with tube well). Optimized palm oil fatty acid methyl esters (POFAMEs) yields were depicted to be 47.6 ± 1.5, 92.7 ± 2.5, and 95.4 ± 2.0% for chemical transesterification catalyzed by NaOH, KOH, and NaOCH3, respectively, whereas for enzymatic transesterification reactions catalyzed by NOVOZYME-435 and A. n. lipase optimized biodiesel yields were 94.2 ± 3.1 and 62.8 ± 2.4%, respectively. Distinct decrease in particulate matter (PM) and carbon monoxide (CO) levels was experienced in exhaust emissions from engine operating on biodiesel blends POB-5, POB-20, POB-40, POB-50, POB-80, and POB-100 comparative to conventional petroleum diesel. Percentage change in CO and PM emissions for different biodiesel blends ranged from -2.1 to -68.7% and -6.2 to -58.4%, respectively, relative to conventional diesel, whereas an irregular trend was observed for NOx emissions. Only POB-5 and POB-20 showed notable reductions, whereas all other blends (POB-40 to POB-100) showed slight increase in NOx emission levels from 2.6 to 5.5% comparative to petroleum diesel.
This study was carried out to determine the concentration of lead (Pb), anions, and cations at six primary schools located around Kuala Lumpur. Low volume sampler (MiniVol PM10) was used to collect the suspended particulates in indoor and outdoor air. Results showed that the concentration of Pb in indoor air was in the range of 5.18 ± 1.08 μg/g-7.01 ± 0.08 μg/g. All the concentrations of Pb in indoor air were higher than in outdoor air at all sampling stations. The concentrations of cations and anions were higher in outdoor air than in indoor air. The concentration of Ca(2+) (39.51 ± 5.01 mg/g-65.13 ± 9.42 mg/g) was the highest because the cation existed naturally in soil dusts, while the concentrations of NO3 (-) and SO4 (2-) were higher in outdoor air because there were more sources of exposure for anions in outdoor air, such as highly congested traffic and motor vehicles emissions. In comparison, the concentration of NO3 (-) (29.72 ± 0.31 μg/g-32.00 ± 0.75 μg/g) was slightly higher than SO4 (2-). The concentrations of most of the parameters in this study, such as Mg(2+), Ca(2+), NO3 (-), SO4 (2-), and Pb(2+), were higher in outdoor air than in indoor air at all sampling stations.
Results from the present study in Kuala Terengganu, Malaysia indicated a significant spatial variation but generally the total suspended particulate concentrations (mean = 17.2-148 microg/m(3)) recorded were below the recommended Malaysia guideline for total suspended particulate (mean of 24-h measurement = 260 microg/m(3)). Some of the elemental composition of particulate aerosol is clearly affected by non crustal sources, e.g. vehicular emission sources. Based on correlation and enrichment analyses, the elements could be grouped into two i.e. Pb, Cd and Zn group with sources from vehicular emission (r > 0.6; enrichment factor > 10) and Al, Fe, Mn and Cr group that appears to be of crustal origin (r > 0.6; enrichment factor < 10). It can also be concluded that the mean levels of Pb (1 ng/m(3)), Cd (0.02 ng/m(3)) and Zn (2 ng/m(3)) in the study area are generally lower than other urban areas in Malaysia (Pb < 181 ng/m(3); Cd < 6 ng/m(3); Zn < 192 ng/m(3)).
A comparative cross-sectional study was conducted to determine tollbooth carbon monoxide (CO) levels and carboxyhaemoglobin (COHb) levels among the tollbooth operators and office workers in the Klang Valley, Kuala Lumpur. All tollbooths were equipped with well functioning air-conditioning. The total number of respondents was 180: 90 toll operators and 90 office workers aged between 19 and 52 years. The highest peak of CO level recorded was 61 ppm. The highest average peak CO level within a shift was 30 ppm. The CO level was higher during peak traffic at 6.00 - 8.00 a.m. There was no significant correlation between average peak CO level with vehicle load (r = -0.007, p = 0.474). The toll operators' median COHb level (1.0%, IQR = 0.8%) was significantly higher (p = 0.008) compared to office workers (0.7%, IQR = 0.8). There was a weak and significant correlation between COHb levels with average peak CO levels (r = 0.228, p = 0.031). In conclusion, tollbooth operators were chronically exposed to CO leading to higher COHb levels compared to office workers.
A new home-made diffusive bag-type passive sampler called Lanwatsu was developed for benzene, toluene, ethylbenzene and xylene monitoring in roadside air. The passive samplers were outdoor validated and deployed together with two commercial passive samplers, Ultra I SKC Inc. and Radiello, for daily roadside air monitoring in East Asian cities including HoChiMinh, Hanoi, Cantho, Danang, Vungtau, Hue (Vietnam), Kuala Lumpur (Malaysia), Kyoto, Osaka (Japan), Nanjing (China) and Singapore in 2011. High daily benzene concentrations of 87, 52, 32, 23, 13, 12 and 48 µg/m³ were observed in HoChiMinh, Hanoi, Cantho, Danang, Hue, Vung Tau (Vietnam), and Kuala Lumpur (Malaysia), respectively. Kyoto and Osaka (Japan) were clean with daily benzene concentrations below 2.3 μg/m³. The daily benzene concentrations in Nanjing (China) and Singapore were 5.6 and 6.9 μg/m³, respectively. The three passive samplers were equivalent. Passive sampling by the Lanwatsu passive sampler is acceptable for daily outdoor benzene monitoring.
This is the first publication on the distribution and sources of polycyclic aromatic hydrocarbons (PAHs) in riverine and coastal sediments in South East Asia where the rapid transfer of land-based pollutants into aquatic environments by heavy rainfall and runoff waters is of great concern. Twenty-nine Malaysian riverine and coastal sediments were analyzed for PAHs (3-7 rings) by gas chromatography mass spectrometry. Total PAHs concentrations in the sediment ranged from 4 to 924 ng/g. Alkylated homologues were abundant for all sediment samples. The ratio of the sum of methylphenanthrenes to phenanthrene (MP/P), an index of petrogenic PAHs contribution, was more than unity for 26 sediment samples and more than 3 for seven samples for urban rivers covering a broad range of locations. The MP/P ratio showed a strong correlation with the total PAHs concentrations, with an r2 value of 0.74. This ratio and all other compositional features indicated that Malaysian urban sediments are heavily impacted by petrogenic PAHs. This finding is in contrast to other studies reported in many industrialized countries where PAHs are mostly of pyrogenic origin. The MP/P ratio was also significantly correlated with higher molecular weight PAHs such as benzo[a]pyrene, suggesting unique PAHs source in Malaysia which contains both petrogenic PAHs and pyrogenic PAHs. PAHs and hopanes fingerprints indicated that used crankcase oil is one of the major contributors of the sedimentary PAHs. Two major routes of inputs to aquatic environments have been identified: (1) spillage and dumping of waste crankcase oil and (2) leakage of crankcase oils from vehicles onto road surfaces, with the subsequent washout by street runoff. N-Cyclohexyl-2-benzothiazolamine (NCBA), a molecular marker of street dust, was detected in the polluted sediments. NCBA and other biomarker profiles confirmed our hypothesis of the input from street dust contained the leaked crankcase oil. The fingerprints excluded crude oil, fresh lubricating oil, asphalt, and tire-particles as major contributors.