Displaying all 4 publications

Abstract:
Sort:
  1. Naim MA, Smidt H, Sipkema D
    PeerJ, 2017;5:e3722.
    PMID: 28894639 DOI: 10.7717/peerj.3722
    Fungi and other eukaryotes represent one of the last frontiers of microbial diversity in the sponge holobiont. In this study we employed pyrosequencing of 18S ribosomal RNA gene amplicons containing the V7 and V8 hypervariable regions to explore the fungal diversity of seven sponge species from the North Sea and the Mediterranean Sea. For most sponges, fungi were present at a low relative abundance averaging 0.75% of the 18S rRNA gene reads. In total, 44 fungal OTUs (operational taxonomic units) were detected in sponges, and 28 of these OTUs were also found in seawater. Twenty-two of the sponge-associated OTUs were identified as yeasts (mainly Malasseziales), representing 84% of the fungal reads. Several OTUs were related to fungal sequences previously retrieved from other sponges, but all OTUs were also related to fungi from other biological sources, such as seawater, sediments, lakes and anaerobic digesters. Therefore our data, supported by currently available data, point in the direction of mostly accidental presence of fungi in sponges and do not support the existence of a sponge-specific fungal community.
    Matched MeSH terms: North Sea
  2. Song J, Jongmans-Hochschulz E, Mauder N, Imirzalioglu C, Wichels A, Gerdts G
    Sci Total Environ, 2020 Jun 10;720:137603.
    PMID: 32143053 DOI: 10.1016/j.scitotenv.2020.137603
    The prevalence of multidrug-resistant Gram-negative bacteria in aquatic environments has been a long withstanding health concern, namely extended-spectrum beta-lactamase (ESBL) producing Escherichia coli. Given increasing reports on microplastic (MP) pollution in these environments, it has become crucial to better understand the role of MP particles as transport vectors for such multidrug-resistant bacteria. In this study, an incubation experiment was designed where particles of both synthetic and natural material (HDPE, tyre wear, and wood) were sequentially incubated at multiple sites along a salinity gradient from the Lower Weser estuary (Germany) to the offshore island Helgoland (German Bight, North Sea). Following each incubation period, particle biofilms and water samples were assessed for ESBL-producing E. coli, first by the enrichment and detection of E. coli using Fluorocult® LMX Broth followed by cultivation on CHROMAgar™ ESBL media to select for ESBL-producers. Results showed that general E. coli populations were present on the surfaces of wood particles across all sites but none were found to produce ESBLs. Additionally, neither HDPE nor tyre wear particles were found to harbour any E. coli. Conversely, ESBL-producing E. coli were present in surrounding waters from all sites, 64% of which conferred resistances against up to 3 other antibiotic groups, additional to the beta-lactam resistances intrinsic to ESBL-producers. This study provides a first look into the potential of MP to harbour and transport multidrug-resistant E. coli across different environments and the approach serves as an important precursor to further studies on other potentially harmful MP-colonizing species.
    Matched MeSH terms: North Sea
  3. Beare D, McQuatters-Gollop A, van der Hammen T, Machiels M, Teoh SJ, Hall-Spencer JM
    PLoS One, 2013;8(5):e61175.
    PMID: 23658686 DOI: 10.1371/journal.pone.0061175
    Relationships between six calcifying plankton groups and pH are explored in a highly biologically productive and data-rich area of the central North Sea using time-series datasets. The long-term trends show that abundances of foraminiferans, coccolithophores, and echinoderm larvae have risen over the last few decades while the abundances of bivalves and pteropods have declined. Despite good coverage of pH data for the study area there is uncertainty over the quality of this historical dataset; pH appears to have been declining since the mid 1990s but there was no statistical connection between the abundance of the calcifying plankton and the pH trends. If there are any effects of pH on calcifying plankton in the North Sea they appear to be masked by the combined effects of other climatic (e.g. temperature), chemical (nutrient concentrations) and biotic (predation) drivers. Certain calcified plankton have proliferated in the central North Sea, and are tolerant of changes in pH that have occurred since the 1950s but bivalve larvae and pteropods have declined. An improved monitoring programme is required as ocean acidification may be occurring at a rate that will exceed the environmental niches of numerous planktonic taxa, testing their capacities for acclimation and genetic adaptation.
    Matched MeSH terms: North Sea
  4. Naim MA, Morillo JA, Sørensen SJ, Waleed AA, Smidt H, Sipkema D
    FEMS Microbiol Ecol, 2014 Nov;90(2):390-403.
    PMID: 25088929 DOI: 10.1111/1574-6941.12400
    The establishment of next-generation technology sequencing has deepened our knowledge of marine sponge-associated microbiota with the identification of at least 32 phyla of Bacteria and Archaea from a large number of sponge species. In this study, we assessed the diversity of the microbial communities hosted by three sympatric sponges living in a semi-enclosed North Sea environment using pyrosequencing of bacterial and archaeal 16S ribosomal RNA gene fragments. The three sponges harbor species-specific communities each dominated by a different class of Proteobacteria. An α-proteobacterial Rhodobacter-like phylotype was confirmed as the predominant symbiont of Halichondria panicea. The microbial communities of Haliclona xena and H. oculata are described for the first time in this study and are dominated by Gammaproteobacteria and Betaproteobacteria, respectively. Several common phylotypes belonging to Chlamydiae, TM6, Actinobacteria, and Betaproteobacteria were detected in all sponge samples. A number of phylotypes of the phylum Chlamydiae were present at an unprecedentedly high relative abundance of up to 14.4 ± 1.4% of the total reads, which suggests an important ecological role in North Sea sponges. These Chlamydiae-affiliated operational taxonomic units may represent novel lineages at least at the genus level as they are only 86-92% similar to known sequences.
    Matched MeSH terms: North Sea
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links