Zeugodacus cucurbitae and Z. tau are two major fruit fly pests of cucurbitaceous plants in the tropical and subtropical regions. The former species has a broader host range and wider world distribution than the latter. With global climate change, Z. tau shows great potential for geographical expansion with several invasion records in recent years. Males of both species are attracted to cue lure (CL) (and raspberry ketone (RK), a deacetyl derivative of CL), a common male lure used in fruit fly population detection, monitoring and control programs. Males of both species are also known to respond to zingerone (ZN), which are produced by some rainforest orchids. Previous studies have shown that fruit fly-male lure interactions are unique to species and lure types, and significantly impact the success of a lure-based fruit fly control program. We seek to compare the attraction of Z. cucurbitae and Z. tau males to CL, RK and ZN via Probit behavioral assays. Our results showed that CL is more attractive to Z. cucurbitae and Z. tau males than RK, while ZN is a poor lure for both species. Attraction Z. tau to CL is slightly lower than Z. cucurbitae, but the former is at least 1.71 times less attractive to RK than the latter. Together with published information on species' sexual development, our current study indicates a lure-based control program via male annihilation technique for Z. tau will be more challenging than Z. cucurbitae and should incorporate other integrated pest management strategies for a desirable outcome.
The recent discovery of a sesquiterpene, β-caryophyllene (CP) as a male attractant of the guava fruit fly, Bactrocera correcta (Bezzi) (Diptera: Tephritidae) prompted investigations into the attractancy of CP to the Oriental fruit fly, B. dorsalis (Hendel). This is because males of both species of fruit flies are attracted to, and feed on a phenylpropanoid compound, methyl eugenol (ME). Although CP was a more potent attractant than ME for B. correcta, it is not known if males of B. dorsalis are also attracted to CP. The possible attraction of B. dorsalis to CP as a sesquiterpene may indicate its wide host range through its attraction to different groups of plant volatiles i.e., phenylpropanoids and sesquiterpenes. In this paper, we report that males of B. dorsalis were also attracted to, and feed on CP. Subsequently, we conducted a probit regression analysis to determine the quantal response of sexually mature male flies that were attracted to CP in cage bioassays. Therefore, as a measure of male B. dorsalis' sensitivity of CP, the median dose of CP required to elicit a positive response in 50% of the tested B. dorsalis population (ED50) was calculated as 3.7 mg. This value was over 10,000x higher than known ED50 of B. dorsalis' male attraction ME (between 171 and 268 ng). We propose that the attraction of male B. dorsalis flies to CP was much weaker than to ME. Further, we suggest that in any fruit fly surveillance and monitoring programme, application of lures must consider the specificity and potency of each compound to target fruit fly species. The probit regression analysis of male fly quantal response to lure offers such information.
Bacterial cell-to-cell communication (quorum sensing) refers to the regulation of bacterial gene expression in response to changes in microbial population density. Quorum sensing bacteria produce, release and respond to chemical signal molecules called autoinducers. Bacteria use two types of autoinducers, namely autoinducer-1 (AI-1) and autoinducer-2 (AI-2) where the former are N-acylhomoserine lactones and the latter is a product of the luxS gene. Most of the reported literatures show that the majority of oral bacteria use AI-2 for quorum sensing but rarely the AI-1 system. Here we report the isolation of Pseudomonas putida strain T2-2 from the oral cavity. Using high resolution mass spectrometry, it is shown that this isolate produced N-octanoylhomoserine lactone (C8-HSL) and N-dodecanoylhomoserine lactone (C12-HSL) molecules. This is the first report of the finding of quorum sensing of P. putida strain T2-2 isolated from the human tongue surface and their quorum sensing molecules were identified.
Sexually mature males of Bactrocera papayae are strongly attracted to and consume methyl eugenol (ME). Upon consumption, ME is biotransformed to two phenylpropanoids, 2-allyl-4,5-dimethoxyphenol (DMP) and (E)-coniferyl alcohol (CF), that are transported in the hemolymph, sequestered and stored in the rectal glands, and subsequently released as sex and aggregation pheromones during courtship. To date, very little work on the ultrastructure and anatomy of the rectal gland has been done, and the accumulation of phenylpropanoids in the rectal glands of males has not been observed visually. Our objectives are to describe the anatomy and fine structures of the rectal glands of males and females and to observe the accumulation of autofluorescent compounds in the rectal glands of males. The rectal glands of males and females have four rectal papillae with each papilla attached to a rectal pad. The rectal pads protrude from the rectal gland as the only surfaces of the gland that are not surrounded by muscles. The rectal papillae of ME-fed males had oil droplets and autofluorescent compounds that were absent from those of ME-deprived males. The autofluorescent compounds accumulated in the rectal sac, which is an evagination that is not found in rectal glands of females. The accumulation of these compounds increased with time and reached maximum at a day post-ME feeding and decreased thereafter. This trend is similar to the accumulation pattern of phenylpropanoids, CF and DMP in the rectal gland.
The natural occurrence, distribution (within a plant) and roles of four phenylbutanoid compounds (anisyl acetone, cue-lure, raspberry ketone and zingerone) are elucidated for the Asia-Pacific and Oceania regions. These phenylbutanoids may act individually or in combination to attract true fruit fly males belonging to a tribe Dacini of subfamily Dacinae (Diptera: Tepritidae). Of special interest are the mutualistic interactions between the Dacini fruit fly males and the tropical daciniphilous (attracting exclusively Dacini fruit flies) orchids - leading to cross pollination for the orchids and enchanced mating success for the flies. When offered to male flies, anisyl acetone and cue-lure are generally converted to raspberry ketone. Upon consumption, raspberry ketone and zingerone are individually sequestered in the male rectal (pheromonal) gland unchanged. Attracted male flies readily imbibe the phenylbutanoid(s) in the floral synomone to compliment the endogenously synthesized male sex pheromonal components - to enhance attraction of conspecific females during courtship as well as attract conspecific males to form 'leks'. The phenylbutanoid(s) may also act as an allomone to deter vertebrate predators, especially geckos, besides possessing antimicrobial and antioxidant activities. Cue-lure, raspberry ketone and zingerone are important attractants/lures used in pest surveillance and mass trapping under the integrated pest management (IPM) program against quarantine Dacini fruit fly pest species, particularly Bactrocera tryoni and Zeugodacus cucurbitae.