Displaying all 4 publications

Abstract:
Sort:
  1. Yusoh NA, Chia SL, Saad N, Ahmad H, Gill MR
    Sci Rep, 2023 Jan 26;13(1):1456.
    PMID: 36702871 DOI: 10.1038/s41598-023-28454-x
    Poly(ADP-ribose) polymerase (PARP) are critical DNA repair enzymes that are activated as part of the DNA damage response (DDR). Although inhibitors of PARP (PARPi) have emerged as small molecule drugs and have shown promising therapeutic effects, PARPi used as single agents are clinically limited to patients with mutations in germline breast cancer susceptibility gene (BRCA). Thus, novel PARPi combination strategies may expand their usage and combat drug resistance. In recent years, ruthenium polypyridyl complexes (RPCs) have emerged as promising anti-cancer candidates due to their attractive DNA binding properties and distinct mechanisms of action. Previously, we reported the rational combination of the RPC DNA replication inhibitor [Ru(dppz)2(PIP)]2+ (dppz = dipyrido[3,2-a:2',3'-c]phenazine, PIP = 2-(phenyl)-imidazo[4,5-f][1,10]phenanthroline), "Ru-PIP", with the PARPi Olaparib in breast cancer cells. Here, we expand upon this work and examine the combination of Ru-PIP with Olaparib for synergy in lung cancer cells, including in 3D lung cancer spheroids, to further elucidate mechanisms of synergy and additionally assess toxicity in a zebrafish embryo model. Compared to single agents alone, Ru-PIP and Olaparib synergy was observed in both A549 and H1975 lung cancer cell lines with mild impact on normal lung fibroblast MRC5 cells. Employing the A549 cell line, synergy was confirmed by loss in clonogenic potential and reduced migration properties. Mechanistic studies indicated that synergy is accompanied by increased double-strand break (DSB) DNA damage and reactive oxygen species (ROS) levels which subsequently lead to cell death via apoptosis. Moreover, the identified combination was successfully able to inhibit the growth of A549 lung cancer spheroids and acute zebrafish embryos toxicity studies revealed that this combination showed reduced toxicity compared to single-agent Ru-PIP.
    Matched MeSH terms: Phthalazines/pharmacology
  2. Yusoh NA, Tiley PR, James SD, Harun SN, Thomas JA, Saad N, et al.
    J Med Chem, 2023 May 25;66(10):6922-6937.
    PMID: 37185020 DOI: 10.1021/acs.jmedchem.3c00322
    Synergistic drug combinations can extend the use of poly(ADP-ribose) polymerase inhibitors (PARPi) such as Olaparib to BRCA-proficient tumors and overcome acquired or de novo drug resistance. To identify new synergistic combinations for PARPi, we screened a "micro-library" comprising a mix of commercially available drugs and DNA-binding ruthenium(II) polypyridyl complexes (RPCs) for Olaparib synergy in BRCA-proficient triple-negative breast cancer cells. This identified three hits: the natural product Curcumin and two ruthenium(II)-rhenium(I) polypyridyl metallomacrocycles. All combinations identified were effective in BRCA-proficient breast cancer cells, including an Olaparib-resistant cell line, and spheroid models. Mechanistic studies indicated that synergy was achieved via DNA-damage enhancement and resultant apoptosis. Combinations showed low cytotoxicity toward non-malignant breast epithelial cells and low acute and developmental toxicity in zebrafish embryos. This work identifies RPC metallomacrocycles as a novel class of agents for cancer combination therapy and provides a proof of concept for the inclusion of metallocompounds within drug synergy screens.
    Matched MeSH terms: Phthalazines/pharmacology
  3. Saeidi H, Sarafbidabad M
    Mol Biol Rep, 2024 Oct 30;51(1):1103.
    PMID: 39476131 DOI: 10.1007/s11033-024-10034-5
    Despite recent advancements in the treatment of metastatic castrate-resistant prostate cancer (mCRPC), this disease remains lethal. A novel family of targeted pharmaceuticals known as poly-ADP-ribose polymerase (PARP) inhibitors has been developed to treat mCRPC patients with homologous recombination repair (HRR) gene alterations. The FDA recently approved olaparib and rucaparib for treating mCRPC patients with HRR gene alterations. Ongoing trials are investigating combination therapies involving PARP inhibitors combined with radiation, chemotherapy, immunotherapy, and androgen receptor signaling inhibitors (ARSIs) to improve the effectiveness of PARP inhibitors and broaden the range of patients who can benefit from the treatment. This review provides an overview of the development of PARP inhibitors in prostate cancer and analyzes the mechanisms underlying their resistance.
    Matched MeSH terms: Phthalazines/pharmacology
  4. Yusoh NA, Leong SW, Chia SL, Harun SN, Rahman MBA, Vallis KA, et al.
    ACS Chem Biol, 2020 Feb 21;15(2):378-387.
    PMID: 31898884 DOI: 10.1021/acschembio.9b00843
    There is a need to improve and extend the use of clinically approved poly(ADP-ribose) polymerase (PARP) inhibitors (PARPi), including for BRCA wild-type triple-negative breast cancer (TNBC). The demonstration that ruthenium(II) polypyridyl complex (RPC) metallointercalators can rapidly stall DNA replication fork progression provides the rationale for their combination alongside DNA damage response (DDR) inhibitors to achieve synergism in cancer cells. The aim of the present study was to evaluate use of the multi-intercalator [Ru(dppz)2(PIP)]2+ (dppz = dipyrido[3,2-a:2',3'-c]phenazine, PIP = (2-(phenyl)imidazo[4,5-f][1,10]phenanthroline, Ru-PIP) alongside the PARPi olaparib and NU1025. Cell proliferation and clonogenic survival assays indicated a synergistic relationship between Ru-PIP and olaparib in MDA-MB-231 TNBC and MCF7 human breast cancer cells. Strikingly, low dose Ru-PIP renders both cell lines hypersensitive to olaparib, with a >300-fold increase in olaparib potency in TNBC, the largest nongenetic PARPi enhancement effect described to date. A negligible impact on the viability of normal human fibroblasts was observed for any combination tested. Increased levels of DNA double-strand break (DSB) damage and olaparib abrogation of Ru-PIP-activated pChk1 signaling are consistent with PARPi-facilitated collapse of Ru-PIP-associated stalled replication forks. This results in enhanced G2/M cell-cycle arrest, apoptosis, and decreased cell motility for the combination treatment compared to single-agent conditions. This work establishes that an RPC metallointercalator can be combined with PARPi for potent synergy in BRCA-proficient breast cancer cells, including TNBC.
    Matched MeSH terms: Phthalazines/pharmacology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links