Displaying publications 1 - 20 of 49 in total

Abstract:
Sort:
  1. Ng ZX, Kuppusamy UR, Tajunisah I, Fong KC, Chua KH
    Diabetes Res Clin Pract, 2012 Mar;95(3):372-7.
    PMID: 22154374 DOI: 10.1016/j.diabres.2011.11.005
    Conflicting results have been reported in different populations on the association between two particular RAGE gene polymorphisms (-429T/C and -374T/A) and retinopathy in diabetic patients. Therefore this study was designed to assess the association between both gene polymorphisms with retinopathy in Malaysian diabetic patients. A total of 342 type 2 diabetic patients [171 without retinopathy (DNR) and 171 with retinopathy (DR)] and 235 healthy controls were included in this study. Genomic DNA was obtained from blood samples and the screening for the gene polymorphisms was done using polymerase chain reaction-restriction fragment length polymorphism approach. Overall, the genotype distribution for both polymorphisms was not statistically different (p>0.05) among the control, DNR and DR groups. The -429C minor allele frequency of DR group (12.0%) was not significantly different (p>0.05) when compared to DNR group (16.1%) and healthy controls (11.3%). The -374A allele frequency also did not differ significantly between the control and DNR (p>0.05), control and DR (p>0.05) as well as DNR and DR groups (p>0.05). This is the first study report on RAGE gene polymorphism in Malaysian DR patients. In conclusion, -429T/C and -374T/A polymorphisms in the promoter region of RAGE gene were not associated with Malaysian type 2 DR patients.
    Matched MeSH terms: Promoter Regions, Genetic/genetics
  2. Yusoff S, Van Rostenberghe H, Yusoff NM, Talib NA, Ramli N, Ismail NZ, et al.
    Biol. Neonate, 2006;89(3):171-6.
    PMID: 16210851
    Gilbert syndrome is caused by defects in the uridine diphosphate glucuronosyltransferase 1A1 (UGT1A1) gene. These mutations differ among different populations and many of them have been found to be genetic risk factors for the development of neonatal jaundice.
    Matched MeSH terms: Promoter Regions, Genetic/genetics
  3. Parveez GK, Rasid OA, Masani MY, Sambanthamurthi R
    Plant Cell Rep, 2015 Apr;34(4):533-43.
    PMID: 25480400 DOI: 10.1007/s00299-014-1722-4
    Oil palm is a major economic crop for Malaysia. The major challenges faced by the industry are labor shortage, availability of arable land and unstable commodity price. This has caused the industry to diversify its applications into higher value products besides increasing its yield. While conventional breeding has its limitations, biotechnology was identified as one of the tools for overcoming the above challenges. Research on biotechnology of oil palm began more than two decades ago leveraging a multidisciplinary approach involving biochemical studies, gene and promoter isolation, transformation vector construction and finally genetic transformation to produce the targeted products. The main target of oil palm biotechnology research is to increase oleic acid in the mesocarp. Other targets are stearic acid, palmitoleic acid, ricinoleic acid, lycopene (carotenoid) and biodegradable plastics. Significant achievements were reported for the biochemical studies, isolation of useful oil palm genes and characterization of important promoters. A large number of transformation constructs for various targeted products were successfully produced using the isolated oil palm genes and promoters. Finally transformation of these constructs into oil palm embryogenic calli was carried out while the regeneration of transgenic oil palm harboring the useful genes is in progress.
    Matched MeSH terms: Promoter Regions, Genetic/genetics
  4. Tee CS, Marziah M, Tan CS, Abdullah MP
    Plant Cell Rep, 2003 Jan;21(5):452-8.
    PMID: 12789448
    Three different morphological callus types, identified as type A, B and C, and tips of in vitro inflorescences were used as target tissues for genetic transformation. Five different DNA plasmids carrying a synthetic green fluorescent protein (gfp) gene driven by different promoters, CaMV 35S, HBT, and Ubi1 were tested for the genetic transformation of Dendrobium Sonia 17. 35S-sgfp-TYG-nos (p35S) with the CaMV 35S promoter showed the highest GFP transient expression rate, while the HBT and Ubi1 promoters showed a relatively lower expression rate in all of the target tissues tested. The highest number of GFP-expressing cells was observed on day 2 post-bombardment, and the number declined gradually over the course of the next 2 weeks. Type A and B callus were found to be the best potential target tissues for genetic transformation.
    Matched MeSH terms: Promoter Regions, Genetic/genetics*
  5. Poon CH, Heng BC, Lim LW
    Ann N Y Acad Sci, 2021 01;1484(1):9-31.
    PMID: 32808327 DOI: 10.1111/nyas.14458
    Advances in characterizing molecular profiles provide valuable insights and opportunities for deciphering the neuropathology of depression. Although abnormal brain-derived neurotrophic factor (BDNF) expression in depression has gained much support from preclinical and clinical research, how it mediates behavioral alterations in the depressed state remains largely obscure. Environmental factors contribute significantly to the onset of depression and produce robust epigenetic changes. Epigenetic regulation of BDNF, as one of the most characterized gene loci in epigenetics, has recently emerged as a target in research on memory and psychiatric disorders. Specifically, epigenetic alterations of BDNF exons are heavily involved in mediating memory functions and antidepressant effects. In this review, we discuss key research on stress-induced depression from both preclinical and clinical studies, which revealed that differential epigenetic regulation of specific BDNF exons is associated with depression pathophysiology. Considering that BDNF has a central role in depression, we argue that memory extinction, an adaptive response to fear exposure, is dependent on BDNF modulation and holds promise as a prospective target for alleviating or treating depression and anxiety disorders.
    Matched MeSH terms: Promoter Regions, Genetic/genetics
  6. Badai SS, Rasid OA, Masani MYA, Chan KL, Chan PL, Shaharuddin NA, et al.
    J Plant Physiol, 2023 Oct;289:154080.
    PMID: 37699261 DOI: 10.1016/j.jplph.2023.154080
    Modification of lipid composition in the mesocarp tissue of oil palm involves genetic manipulation of multiple genes. More than one mesocarp-preferential promoter is necessary for the expression of individual transgenes in the same plant to obviate transcriptional gene silencing. This study aimed to identify genes that are preferentially expressed in the mesocarp tissue and characterize selected candidate mesocarp-preferential promoters. Ten transcripts that were preferentially expressed in the mesocarp tissue were identified from the analysis of 82 transcriptome datasets of 12 different oil palm tissues. The expression of two candidate genes, MSP-C1 and MSP-C6, was verified to be preferentially expressed in the mesocarp tissues and shown to have a low expression level in non-mesocarp tissues by reverse transcription quantitative real-time PCR (RT-qPCR). MSP-C6 promoter fragments of different lengths were transformed into tomato plants for further characterization. Both unripe and ripe fruits of transgenic tomato plants transformed with a construct harboring the MSP-C6-F1 (2014 bp) promoter were shown to have high beta-glucuronidase (GUS) activities. The findings of this study suggest the potential applications of the MSP-C6 promoter as a molecular tool for genetic engineering of novel traits in fruit crops.
    Matched MeSH terms: Promoter Regions, Genetic/genetics
  7. Khor GH, Froemming GR, Zain RB, Abraham MT, Thong KL
    Asian Pac J Cancer Prev, 2014;15(20):8957-61.
    PMID: 25374236
    BACKGROUND: Promoter hypermethylation leads to altered gene functions and may result in malignant cellular transformation. Thus, identification of biomarkers for hypermethylated genes could be useful for diagnosis, prognosis, and therapeutic treatment of oral squamous cell carcinoma (OSCC).

    OBJECTIVES: To screen hypermethylated genes with a microarray approach and to validate selected hypermethylated genes with the methylation-specific polymerase chain reaction (MSPCR).

    MATERIALS AND METHODS: Genome-wide analysis of normal oral mucosa and OSCC tissues was conducted using the Illumina methylation microarray. The specified differential genes were selected and hypermethylation status was further verified with an independent cohort sample of OSCC samples. Candidate genes were screened using microarray assay and run by MSPCR analysis.

    RESULTS: TP73, PIK3R5, and CELSR3 demonstrated high percentages of differential hypermethylation status.

    CONCLUSIONS: Our microarray screening and MSPCR approaches revealed that the signature candidates of differentially hypermethylated genes may possibly become potential biomarkers which would be useful for diagnostic, prognostic and therapeutic targets of OSCC in the near future.

    Matched MeSH terms: Promoter Regions, Genetic/genetics*
  8. Benner A, Mansouri L, Rossi D, Majid A, Willander K, Parker A, et al.
    Haematologica, 2014 Aug;99(8):1285-91.
    PMID: 25082786 DOI: 10.3324/haematol.2013.101170
    A number of single nucleotide polymorphisms have been associated with disease predisposition in chronic lymphocytic leukemia. A single nucleotide polymorphism in the MDM2 promotor region, MDM2SNP309, was shown to soothe the p53 pathway. In the current study, we aimed to clarify the effect of the MDM2SNP309 on chronic lymphocytic leukemia characteristics and outcome. We performed a meta-analysis of data from 2598 individual patients from 10 different cohorts. Patients' data and genetic analysis for MDM2SNP309 genotype, immunoglobulin heavy chain variable region mutation status and fluorescence in situ hybridization results were collected. There were no differences in overall survival based on the polymorphism (log rank test, stratified by study cohort; P=0.76; GG genotype: cohort-adjusted median overall survival of 151 months; TG: 153 months; TT: 149 months). In a multivariable Cox proportional hazards regression analysis, advanced age, male sex and unmutated immunoglobulin heavy chain variable region genes were associated with inferior survival, but not the MDM2 genotype. The MDM2SNP309 is unlikely to influence disease characteristics and prognosis in chronic lymphocytic leukemia. Studies investigating the impact of individual single nucleotide polymorphisms on prognosis are often controversial. This may be due to selection bias and small sample size. A meta-analysis based on individual patient data provides a reasonable strategy for prognostic factor analyses in the case of small individual studies. Individual patient data-based meta-analysis can, therefore, be a powerful tool to assess genetic risk factors in the absence of large studies.
    Matched MeSH terms: Promoter Regions, Genetic/genetics*
  9. Tan HT, Ellis JA, Koplin JJ, Martino D, Dang TD, Suaini N, et al.
    Pediatr Allergy Immunol, 2014 Oct;25(6):608-10.
    PMID: 24912553 DOI: 10.1111/pai.12245
    Matched MeSH terms: Promoter Regions, Genetic/genetics
  10. Nizam ZM, Abdul Aziz AA, Kaur G, Abu Hassan MR, Mohd Sidek AS, Yeh LY, et al.
    Asian Pac J Cancer Prev, 2013;14(2):619-24.
    PMID: 23621208
    BACKGROUND: Colorectal cancer (CRC) exists in a more common sporadic form and less common hereditary forms, associated with the Lynch syndrome, familial adenomatous polyposis (FAP) and other rare syndromes. Sporadic CRC is believed to arise as a result of close interaction between environmental factors, including dietary and lifestyle habits, and genetic predisposition factors. In contrast, hereditary forms such as those related to the Lynch syndrome result from inheritance of germline mutations of mismatch repair (MMR) genes. However, in certain cases, the influence of low penetrance alleles in familial colorectal cancer susceptibility is also undeniable.

    AIM: To investigate the genotype frequencies of MLH1 promoter polymorphism -93G>A and to determine whether it could play any role in modulating familial and sporadic CRC susceptibility risk.

    METHODS: A case-control study comprising of 104 histopathologically confirmed CRC patients as cases (52 sporadic CRC and 52 Lynch syndrome patients) and 104 normal healthy individuals as controls was undertaken. DNA was extracted from peripheral blood and the polymorphism was genotyped employing PCR-RFLP methods. The genotypes were categorized into homozygous wild type, heterozygous and homozygous variants. The risk association between these polymorphisms and CRC susceptibility risk was calculated using binary logistic regression analysis and deriving odds ratios (ORs).

    RESULTS: When risk association was investigated for all CRC patients as a single group, the heterozygous (G/A) genotype showed a significantly higher risk for CRC susceptibility with an OR of 2.273, (95%CI: 1.133-4.558 and p-value=0.021). When analyzed specifically for the 2 types of CRC, the heterozygous (G/A) genotype showed significantly higher risk for sporadic CRC susceptibility with and OR of 3.714, (95%CI: 1.416-9.740 and p-value=0.008). Despite high OR value was observed for Lynch syndrome (OR: 1.600, 95%CI: 0.715-3.581), the risk was not statistically significant (P=0.253).

    CONCLUSION: Our results suggest an influence of MLH1 promoter polymorphism -93G>A in modulating susceptibility risk in Malaysian CRC patients, especially those with sporadic disease.

    Matched MeSH terms: Promoter Regions, Genetic/genetics
  11. Khor GH, Froemming GR, Zain RB, Abraham TM, Lin TK
    Asian Pac J Cancer Prev, 2016;17(1):219-23.
    PMID: 26838213
    BACKGROUND: Promoter hypermethylation is a frequent epigenetic mechanism for gene transcription repression in cancer and is one of the hallmarks of the disease. Cadherin EGF LAG seven-pass G-type receptor 3 (CELSR3) contributes to cell contact-mediated communication. Dysregulation of promoter methylation has been reported in various cancers.

    OBJECTIVES: The objectives of this study were to investigate the CELSR3 hypermethylation level in oral squamous cell carcinomas (OSCCs) using methylation-sensitive high-resolution melting analysis (MS-HRM) and to correlate CELSR3 methylation with patient demographic and clinicopathological parameters.

    MATERIALS AND METHODS: Frozen tissue samples of healthy subjects' normal mucosa and OSCCs were examined with regard to their methylation levels of the CELSR3 gene using MS-HRM.

    RESULTS: MS-HRM analysis revealed a high methylation level of CELSR3 in 86% of OSCC cases. Significant correlations were found between CELSR3 quantitative methylation levels with patient ethnicity (P=0.005), age (P=0.024) and pathological stages (P=0.004). A moderate positive correlation between CELSR3 and patient age was also evident (R=0.444, P=0.001).

    CONCLUSIONS: CELSR3 promoter hypermethylation may be an important mechanism involved in oral carcinogenesis. It may thus be used as a biomarker in OSCC prognostication.

    Matched MeSH terms: Promoter Regions, Genetic/genetics
  12. Mualif SA, Teow SY, Omar TC, Chew YW, Yusoff NM, Ali SA
    PLoS One, 2015;10(7):e0130446.
    PMID: 26147991 DOI: 10.1371/journal.pone.0130446
    Relative ease in handling and manipulation of Escherichia coli strains make them primary candidate to express proteins heterologously. Overexpression of heterologous genes that contain codons infrequently used by E. coli is related with difficulties such as mRNA instability, early termination of transcription and/or translation, deletions and/or misincorporation, and cell growth inhibition. These codon bias -associated problems are addressed by co-expressing ColE1-compatible, rare tRNA expressing helper plasmids. However, this approach has inadequacies, which we have addressed by engineering an expression vector that concomitantly expresses the heterologous protein of interest, and rare tRNA genes in E. coli. The expression vector contains three (argU, ileY, leuW) rare tRNA genes and a useful multiple cloning site for easy in-frame cloning. To maintain the overall size of the parental plasmid vector, the rare tRNA genes replaced the non-essential DNA segments in the vector. The cloned gene is expressed under the control of T7 promoter and resulting recombinant protein has a C-terminal 6His tag for IMAC-mediated purification. We have evaluated the usefulness of this expression vector by expressing three HIV-1 genes namely HIV-1 p27 (nef), HIV-1 p24 (ca), and HIV-1 vif in NiCo21(DE3) E.coli and demonstrated the advantages of using expression vector that concomitantly expresses rare tRNA and heterologous genes.
    Matched MeSH terms: Promoter Regions, Genetic/genetics
  13. Lee AS, Ho GH, Oh PC, Balram C, Ooi LL, Lim DT, et al.
    Hum Mutat, 2003 Aug;22(2):178.
    PMID: 12872263
    The mutation spectrum of the BRCA1 gene among ethnic groups from Asia has not been well studied. We investigated the frequency of mutations in the BRCA1 gene among Malay breast cancer patients from Singapore, independent of family history. By using the protein truncation test (PTT) and direct sequencing, BRCA1 mutations were detected in 6 of 49 (12.2%) unrelated patients. Four novel missense mutations in exon 11, T557A (1788A>G), T582A (1863A>G), N656S (2086A>G) and P684S (2169C>T) were identified in one patient. Two patients had missense mutations in exon 23, V1809A (5545T>C), which has been previously detected in individuals from Central and Eastern Europe. Three unrelated patients had the deleterious 2846insA frameshift mutation in exon 11. Methylation specific PCR (MSP) of the promoter region of the BRCA1 gene detected hypermethylation of tumor DNA in an additional 2 patients. Haplotype analysis using the microsatellite markers D17S855, D17S1323 and D17S1325 revealed a common haplotype for the three unrelated patients and their three relatives with the 2846insA mutation. These findings strongly suggest that the 2846insA mutation, the most common deleterious mutation in this study, may possibly be a founder mutation in breast cancer patients of Malay ethnic background.
    Matched MeSH terms: Promoter Regions, Genetic/genetics
  14. Halim MA, Choo QC, Ghazali AHA, Wajidi MFF, Najimudin N
    Lett Appl Microbiol, 2021 May;72(5):610-618.
    PMID: 33525052 DOI: 10.1111/lam.13455
    Paenibacillus durus strain ATCC 35681T is a Gram-positive diazotroph that displayed capability of fixing nitrogen even in the presence of nitrate or ammonium. However, the nitrogen fixation activity was detected only at day 1 of growth when cultured in liquid nitrogen-enriched medium. The transcripts of all the nifH homologues were present throughout the 9-day study. When grown in nitrogen-depleted medium, nitrogenase activities occurred from day 1 until day 6 and the nifH transcripts were also present during the course of the study albeit at different levels. In both studies, the absence of nitrogen fixation activity regardless of the presence of the nifH transcripts raised the possibility of a post-transcriptional or post-translational regulation of the system. A putative SigA box sequence was found upstream of the transcription start site of nifB1, the first gene in the major nitrogen fixation cluster. The upstream region of nifB2 showed a promoter recognizable by SigE, a sigma factor normally involved in sporulation.
    Matched MeSH terms: Promoter Regions, Genetic/genetics
  15. Abdul Mutalib NE, Mat Isa N, Alitheen NB, Song AA, Rahim RA
    Plasmid, 2014 May;73:26-33.
    PMID: 24780699 DOI: 10.1016/j.plasmid.2014.04.003
    Plasmid DNAs isolated from lactic acid bacteria (LAB) such as Lactococcus lactis (L. lactis) has been gaining more interests for its positive prospects in genetic engineering-related applications. In this study, the lactococcal plasmid, pNZ8048 was modified so as to be able to express multiple genes in the eukaryotic system. Therefore, a cassette containing an internal ribosome entry site (IRES) was cloned between VP2 gene of a very virulent infectious bursal disease (vvIBDV) UPM 04190 of Malaysian local isolates and the reporter gene, green fluorescent protein (GFP) into pNZ:CA, a newly constructed derivative of pNZ8048 harboring the cytomegalovirus promoter (Pcmv) and polyadenylation signal. The new bicistronic vector, denoted as pNZ:vig was subjected to in vitro transcription/translation system followed by SDS-PAGE and Western blot analysis to rapidly verify its functionality. Immunoblotting profiles showed the presence of 49 and 29kDa bands that corresponds to the sizes of the VP2 and GFP proteins respectively. This preliminary result shows that the newly constructed lactococcal bicistronic vector can co-express multiple genes in a eukaryotic system via the IRES element thus suggesting its feasibility to be used for transfection of in vitro cell cultures and vaccine delivery.
    Matched MeSH terms: Promoter Regions, Genetic/genetics
  16. Babura SR, Abdullah SNA, Khaza Ai H
    J Nutr Sci Vitaminol (Tokyo), 2017;63(4):215-221.
    PMID: 28978868 DOI: 10.3177/jnsv.63.215
    Tocotrienols are forms of vitamin E that are present in several important food crops. Compared to tocopherols, less research has been conducted on these compounds because of their low bioavailability and distribution in plant tissues. Both tocotrienols and tocopherols are known for their antioxidant and anticancer activities, which are beneficial for both humans and animals. Moreover, tocotrienols possess certain properties which are not found in tocopherols, such as neuroprotective and cholesterol-lowering activities. The contents of tocotrienols in plants vary. Tocotrienols constitute more than 70% and tocopherols less than 30% of the total vitamin E content in palm oil, which is the best source of vitamin E. Accumulation of tocotrienols also occurs in non-photosynthetic tissues, such as the seeds, fruits and latex of some monocotyledonous and dicotyledonous plant species. The use of biotechnological techniques to increase the tocotrienol content in plants, their biological functions, and benefits to human health are discussed in this review.
    Matched MeSH terms: Promoter Regions, Genetic/genetics
  17. Lazarev VN, Parfenova TM, Gularyan SK, Misyurina OY, Akopian TA, Govorun VM
    Int J Antimicrob Agents, 2002 Feb;19(2):133-7.
    PMID: 11850166
    As the number of pathogenic microbial strains resistant to different antibiotics increases, amphipathic peptides with antimicrobial activity are promising agents for the therapy of infectious diseases. This work deals with the effect of an amphipathic antimicrobial peptide, melittin, expressed within recombinant plasmid vectors, on infection with urogenital pathogens Chlamydia trachomatis and Mycoplasma hominis in HeLa cell culture. Recombinant plasmid constructs with the melittin gene under the control of the tetracycline-responsive promoter of human cytomegalovirus were obtained. We showed inhibition of C. trachomatis and M. hominis infection after the introduction of recombinant plasmid vectors expressing the melittin gene into the infected cell culture.
    Matched MeSH terms: Promoter Regions, Genetic/genetics
  18. Govender N, Wong MY
    Phytopathology, 2017 04;107(4):483-490.
    PMID: 27918241 DOI: 10.1094/PHYTO-02-16-0062-R
    A highly efficient and reproducible Agrobacterium-mediated transformation protocol for Ganoderma boninense was developed to facilitate observation of the early stage infection of basal stem rot (BSR). The method was proven amenable to different explants (basidiospore, protoplast, and mycelium) of G. boninense. The transformation efficiency was highest (62%) under a treatment combination of protoplast explant and Agrobacterium strain LBA4404, with successful expression of an hyg marker gene and gus-gfp fusion gene under the control of heterologous p416 glyceraldehyde 3-phosphate dehydrogenase promoter. Optimal transformation conditions included a 1:100 Agrobacterium/explant ratio, induction of Agrobacterium virulence genes in the presence of 250 μm acetosyringone, co-cultivation at 22°C for 2 days on nitrocellulose membrane overlaid on an induction medium, and regeneration of transformants on potato glucose agar prepared with 0.6 M sucrose and 20 mM phosphate buffer. Evaluated transformants were able to infect root tissues of oil palm plantlets with needle-like microhyphae during the penetration event. The availability of this model pathogen system for BSR may lead to a better understanding of the pathogenicity factors associated with G. boninense penetration into oil palm roots.
    Matched MeSH terms: Promoter Regions, Genetic/genetics
  19. Tai ES, Corella D, Deurenberg-Yap M, Cutter J, Chew SK, Tan CE, et al.
    J Nutr, 2003 Nov;133(11):3399-408.
    PMID: 14608050 DOI: 10.1093/jn/133.11.3399
    We have previously reported an interaction between -514C>T polymorphism at the hepatic lipase (HL) gene and dietary fat on high-density lipoprotein-cholesterol (HDL-C) metabolism in a representative sample of white subjects participating in the Framingham Heart Study. Replication of these findings in other populations will provide proof for the relevance and consistency of this marker as a tool for risk assessment and more personalized cardiovascular disease prevention. Therefore, we examined this gene-nutrient interaction in a representative sample of Singaporeans (1324 Chinese, 471 Malays and 375 Asian Indians) whose dietary fat intake was recorded by a validated questionnaire. When no stratification by fat intake was considered, the T allele was associated with higher plasma HDL-C concentrations (P = 0.001), higher triglyceride (TG) concentrations (P = 0.001) and higher HDL-C/TG ratios (P = 0.041). We found a highly significant interaction (P = 0.001) between polymorphism and fat intake in determining TG concentration and the HDL-C/TG ratio (P = 0.001) in the overall sample even after adjustment for potential confounders. Thus, TT subjects showed higher TG concentrations only when fat intake supplied >30% of total energy. This interaction was also found when fat intake was considered as continuous (P = 0.035). Moreover, in the upper tertile of fat intake, TT subjects had 45% more TG than CC individuals (P < 0.01). For HDL-C concentration, the gene-diet interaction was significant (P = 0.015) only in subjects of Indian origin. In conclusion, our results indicate that there are differences in the association of -514C>T polymorphism with plasma lipids according to dietary intake and ethnic background. Specifically, the TT genotype is associated with a more atherogenic lipid profile when subjects consume diets with a fat content > 30%.
    Matched MeSH terms: Promoter Regions, Genetic/genetics*
  20. Greenwood MP, Greenwood M, Gillard BT, Loh SY, Paton JF, Murphy D
    J Neuroendocrinol, 2016 04;28(4).
    PMID: 26833868 DOI: 10.1111/jne.12371
    The synthesis of arginine vasopressin (AVP) in the supraoptic nucleus (SON) and paraventricular nucleus (PVN) of the hypothalamus is sensitive to increased plasma osmolality and a decreased blood volume, and thus is robustly increased by both dehydration (increased plasma osmolality and decreased blood volume) and salt loading (increased plasma osmolality). Both stimuli result in functional remodelling of the SON and PVN, a process referred to as functional-related plasticity. Such plastic changes in the brain have recently been associated with altered patterns of DNA methylation at CpG (cytosine-phosphate-guanine) residues, a process considered to be important for the regulation of gene transcription. In this regard, the proximal Avp promoter contains a number of CpG sites and is recognised as one of four CpG islands for the Avp gene, suggesting that methylation may be regulating Avp transcription. In the present study, we show that, in an immortalised hypothalamic cell line 4B, the proximal Avp promoter is highly methylated, and treatment of these cells with the DNA methyltransferase inhibitor 5-Aza-2'-deoxycytidine to demethylate DNA dramatically increases basal and stimulated Avp biosynthesis. We report no changes in the expression of DNA methyltransferases, Dnmt1 and Dnmt3a, whereas there is decreased expression of the demethylating enzyme ten-eleven-translocation 2, Tet2, in the SON by dehydration and salt loading. We found higher methylation of the SON Avp promoter in dehydrated but not salt-loaded rats. By analysis of individual CpG sites, we observed hypomethylation, hypermethylation and no change in methylation of specific CpGs in the SON Avp promoter of the dehydrated rat. Using reporter gene assays, we show that mutation of individual CpGs can result in altered Avp promoter activity. We propose that methylation of the SON Avp promoter is necessary to co-ordinate the duel inputs of increased plasma osmolality and decreased blood volume on Avp transcription in the chronically dehydrated rat.
    Matched MeSH terms: Promoter Regions, Genetic/genetics*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links