Phospholipase A2 receptor 1 (PLA2R1) exists important role in membranous nephropathy. In this study, we evaluate a PLA2R1 in a middle-aged rat model of renal function repair to further investigate the molecular mechanisms of membranous nephropathy. We analyzed the PLA2R1 knockout (KO) model and PLA2R1 knock in (KI) model in rats, extending the time to 85 weeks of age. Urinary biochemical indicators were detected using a fully automated biochemical analyzer. The complement C3, IgG, and Nephrin were detected using the immunofluorescence method. Western blot was used to detect the expression levels of complement C3, IgA and PLA2R1 in middle-aged models. The KO model continues to display glomerular proteinuria, complement C3 aggregation, and IgA and IgG deposition. Comparing with the KO model, the deposition of complement C3 and IgA in the glomerulus of the KI chimeric model still exists and IgG expression weakened. Inserting humanized PLA2R1 into rats can continuously repair partial renal function and reduce proteinuria, which will help investigate the pathogenesis of membranous nephropathy and complement activation signaling pathways.
Phospholipase A2 receptor 1 (PLA2R1) exists in many animals and plays an important role in membranous nephropathy. In this study, we aimed to evaluate a PLA2R1 knock-in rat model with repaired kidney function to study the molecular mechanisms of membranous nephropathy. We constructed the PLA2R1 knockout [PLA2R1(-)] model and PLA2R1 knock in [PLA2R1(+)] model in rats. Consistent complement C3 and IgA expression was confirmed through colocalization studies. Urinary biochemical indicators were performed using Automatic Biochemistry Analyzer. The complement C3, IgG, and Nephrin were detected by immunofluorescence assay. The expression levels of complement C3, IgA, and PLA2R1 were detected by western blot. The differential expression proteins (DEPs) between control and PLA2R1(+) models were detected by liquid chromatography with tandem mass spectrometry. The PLA2R1(-) model showed proteinuria, complement C3 aggregation, and IgA and IgG deposition in the glomerulus. Comparing with the PLA2R1(-) model, the PLA2R1(+) model, the deposition of complement C3 and IgA in the glomerulus did not completely disappear, and IgG expression weakened. Moreover, the absolute value of urinary protein was much lower in the PLA2R1(+) model than in the PLA2R1(-) model, and some of the humanized PLA2R1 gene fragments repaired some of the kidney functions. Humanized PLA2R1-insertion in rats can repair part of the renal function and reduce proteinuria, which will help in studying the molecular mechanisms of membranous nephropathy, as well as the entire membranous nephropathy-related system and complement activation signaling pathway.
The aim of the present study was to investigate the effectiveness of transforming growth factor (TGF)-beta1 antisense oligodeoxynucleotides (ODN) in ameliorating deteriorated kidney function in rats with puromycin-induced chronic renal failure (CRF).