Displaying all 3 publications

Abstract:
Sort:
  1. Pyvovar SM, Rudyk I, Scherban TD
    Wiad Lek, 2024;77(1):105-113.
    PMID: 38431814 DOI: 10.36740/WLek202401113
    OBJECTIVE: Aim: To analyze the role of cytokines in the progression of heart failure (HF) in patients with concomitant pathology of the thyroid gland.

    PATIENTS AND METHODS: Materials and Methods: The systematization of literature data on the role of cytokines in the progression of HF in patients with concomitant thyroid pathology (TP) was carried out. The results of our own research were presented.

    CONCLUSION: Conclusions: The final chapter in the history of the role of cytokines in the progression of HF has not yet been written. Further studies, including genetic ones, are necessary. The patients with HF have higher levels of TNFβ and IL-6, and a lower concentration of IL-4, compared to the control group. Patients with a fatal outcome of the disease, in contrast to those who survived for two years, have an increased level of TNFβ. In patients with concomitant TP, who had repeated hospitalization, a lower level was registered, compared to that under conditions of a more favorable course of heart failure. Concentrations of cytokines in the blood of patients with HF are associated with gene polymorphisms of the β-adrenoreceptor system: the C-allele of the Gly389A polymorphism of the β1-adrenoceptor gene leads to a decrease in the risk of increasing TNFα; IL-1α increases in the presence of the A-allele of the Ser49Gly polymorphism of this gene. In patients with HF and concomitant thyroid pathology, the risk of IL-6 growth increases in homozygous (C) patients for the Ser275 polymorphism of the β3 subunit of the G-protein.

    Matched MeSH terms: Receptors, Adrenergic, beta-1/genetics
  2. Khor KH, Moore TA, Shiels IA, Greer RM, Arumugam TV, Mills PC
    PLoS One, 2016;11(1):e0146022.
    PMID: 26727203 DOI: 10.1371/journal.pone.0146022
    PURPOSE: Inflammation may contribute to the pathogenesis of specific cardiovascular diseases, but it is uncertain if mediators released during the inflammatory process will affect the continued efficacy of drugs used to treat clinical signs of the cardiac disease. We investigated the role of the complement 5a receptor 1 (C5aR1/CD88) in the cardiac response to inflammation or atenolol, and the effect of C5aR1 deletion in control of baseline heart rate in an anesthetized mouse model.

    METHODS: An initial study showed that PMX53, an antagonist of C5aR1 in normal C57BL6/J (wild type, WT) mice reduced heart rate (HR) and appeared to have a protective effect on the heart following induced sepsis. C5aR1 knockout (CD88-/-) mice had a lower HR than wild type mice, even during sham surgery. A model to assess heart rate variability (HRV) in anesthetized mice was developed to assess the effects of inhibiting the β1-adrenoreceptor (β1-AR) in a randomized crossover study design.

    RESULTS: HR and LF Norm were constitutively lower and SDNN and HF Norm constitutively higher in the CD88-/- compared with WT mice (P< 0.001 for all outcomes). Administration of atenolol (2.5 mg/kg) reduced the HR and increased HRV (P< 0.05, respectively) in the wild type but not in the CD88-/- mice. There was no shift of the sympathovagal balance post-atenolol in either strains of mice (P> 0.05), except for the reduced LF/HF (Lower frequency/High frequency) ratio (P< 0.05) at 60 min post-atenolol, suggesting increased parasympathetic tone of the heart due to the effect of atenolol administration. The HR of the WT mice were lower post atenolol compared to the CD88-/- mice (P = 0.001) but the HRV of CD88-/- mice were significantly increased (P< 0.05), compared with WT mice.

    CONCLUSION: Knockout of the C5aR1 attenuated the effect of β1-AR in the heart, suggesting an association between the β1-AR and C5aR1, although further investigation is required to determine if this is a direct or causal association.

    Matched MeSH terms: Receptors, Adrenergic, beta-1/metabolism*
  3. Safi SZ, Qvist R, Yan GO, Ismail IS
    BMC Med Genomics, 2014;7:29.
    PMID: 24885710 DOI: 10.1186/1755-8794-7-29
    Aberrant epigenetic profiles are concomitant with a spectrum of developmental defects and diseases. Role of methylation is an increasingly accepted factor in the pathophysiology of diabetes and its associated complications. This study aims to examine the correlation between oxidative stress and methylation of β1, β2 and β3-adrenergic receptors and to analyze the differential variability in the expression of these genes under hyperglycemic conditions.
    Matched MeSH terms: Receptors, Adrenergic, beta-1/genetics; Receptors, Adrenergic, beta-1/metabolism
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links