Displaying all 6 publications

Abstract:
Sort:
  1. Hasan HA, AbuOdeh RO, Muda WAMBW, Mohamed HJBJ, Samsudin AR
    Diabetes Metab Syndr, 2017 Dec;11 Suppl 2:S531-S537.
    PMID: 28392355 DOI: 10.1016/j.dsx.2017.03.047
    AIMS: The aim was to investigate relationships of Vitamin D receptor gene (VDR) polymorphisms to the components of MetS among Arabs adult residing in the United Arab Emirates.

    METHODS: A cross-sectional study of 198 Arabs adult (50 males and 148 females). Serum levels of glucose, vitamin D, HDL-C, and TG, and blood pressure were measured. FokI, BsmI & TaqI genotyping of VDR were investigated using PCR-RFLP technique.

    RESULTS: Age of the participants was 21(9) years with a BMI of 26.8(7.8) kg/m2. About 15% had MetS with serum vitamin D levels of 25.5(18.2) nmol/L. VDR genotyping yielded: FokI: 57.1% FF and 38.9% Ff, BsmI: 29.8% bb and 51.5% Bb, while TaqI showed 39.4% TT and 43.4% Tt. The ff carriers had higher total cholesterol [174(12.4) mg/dl] than FF and Ff genotypes. Bb carriers showed higher BMI and LDL-C than BB and bb genotypes. In females, FokI VDR polymorphism showed significant association with systolic blood pressure (SBP) and F allele carriers were at higher risk of developing high SBP [x2=4.4, df1, OR=0.29 (95%CI: 0.087-0.98), p=0.035].

    CONCLUSION: VDR gene polymorphisms were not associated with MetS, yet it may affect the severity of some of components of MetS, namely the association of BsmI with obesity, FokI and BsmI with dyslipidemia and FokI with SBP.

    Matched MeSH terms: Receptors, Calcitriol/genetics*
  2. Rahmadhani R, Zaharan NL, Mohamed Z, Moy FM, Jalaludin MY
    PLoS One, 2017;12(6):e0178695.
    PMID: 28617856 DOI: 10.1371/journal.pone.0178695
    BACKGROUND: The vitamin D receptor (VDR) gene is expressed abundantly in different tissues; including adipocytes and pancreatic beta cells. The rs1544410 or BsmI single nucleotide polymorphism (SNP) in the intronic region of the VDR gene has been previously associated with vitamin D levels, obesity and insulin resistance.

    AIMS: This study was aimed to examine the association between BsmI polymorphism and risk of vitamin D deficiency, obesity and insulin resistance in adolescents living in a tropical country.

    METHODS: Thirteen-year-old adolescents were recruited via multistage sampling from twenty-three randomly selected schools across the city of Kuala Lumpur, Malaysia (n = 941). Anthropometric measurements were obtained. Obesity was defined as body mass index higher than the 95th percentile of the WHO chart. Levels of fasting serum vitamin D (25-hydroxyvitamin D (25(OH)D)), glucose and insulin were measured. HOMA-IR was calculated as an indicator for insulin resistance. Genotyping was performed using the Sequenom MassARRAY platform (n = 807). The associations between BsmI and vitamin D, anthropometric parameters and HOMA-IR were examined using analysis of covariance and logistic regression.

    RESULT: Those with AA genotype of BsmI had significantly lower levels of 25(OH)D (p = 0.001) compared to other genotypes. No significant differences was found across genotypes for obesity parameters. The AA genotype was associated with higher risk of vitamin D deficiency (p = 0.03) and insulin resistance (p = 0.03) compared to GG. The A allele was significantly associated with increased risk of vitamin D deficiency compared to G allele (adjusted odds ratio (OR) = 1.63 (95% Confidence Interval (CI) 1.03-2.59, p = 0.04). In those with concurrent vitamin D deficiency, having an A allele significantly increased their risk of having insulin resistance compared to G allele (adjusted OR = 2.66 (95% CI 1.36-5.19, p = 0.004).

    CONCLUSION: VDR BsmI polymorphism was significantly associated with vitamin D deficiency and insulin resistance, but not with obesity in this population.

    Matched MeSH terms: Receptors, Calcitriol/genetics*
  3. Lye MS, Tor YS, Tey YY, Shahabudin A, Loh SP, Ibrahim N, et al.
    J Mol Neurosci, 2021 May;71(5):981-990.
    PMID: 33034825 DOI: 10.1007/s12031-020-01719-0
    Heritability of major depressive disorder (MDD) is between 36 and 44%, suggesting that up to nearly half of the phenotypic variability is attributable to genes. A number of genetic polymorphisms have been shown to predispose certain individuals to depression. Of particular interest are the polymorphisms of the vitamin D receptor (VDR) gene. Although the VDR gene has been well characterized and a vast number of polymorphisms have been identified, the association between BsmI (rs1544410), ApaI (rs7975232) and TaqI (rs731236) single-nucleotide polymorphisms (SNPs), together with their haplotypes, and MDD risk have yet to be established. We conducted a matched case-control study with a total of 600 participants comprising 300 major depressive disorder (MDD) cases and 300 controls matched by age, gender and ethnicity in a 1:1 ratio, in four public hospitals in Kuala Lumpur and Selangor. Three adjacent SNPs of the VDR gene-BsmI (rs1544410), ApaI (rs7975232) and TaqI (rs731236)-were genotyped using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). Odds ratios and 95% confidence intervals (CIs) were obtained from conditional logistic regression using Stata 16. Linkage disequilibrium and haplotype association with MDD were analyzed using the online SNPStats program. None of the genotypes of the three SNPs was significantly associated with risk of developing MDD after adjusting for confounding factors. However, the TAC (BAt) haplotype was associated with increased odds of MDD (adjusted OR = 2.17, 95% CI = 1.30-3.61, p = 0.003) using CCT (baT) as reference haplotype. The findings suggest that the BsmI-ApaI-TaqI TAC (BAt) haplotype of the VDR gene increases susceptibility to MDD.
    Matched MeSH terms: Receptors, Calcitriol/genetics*
  4. Abdollahzadeh R, Shushizadeh MH, Barazandehrokh M, Choopani S, Azarnezhad A, Paknahad S, et al.
    Infect Genet Evol, 2021 Dec;96:105098.
    PMID: 34610433 DOI: 10.1016/j.meegid.2021.105098
    INTRODUCTION: Growing evidence documented the critical impacts of vitamin D (VD) in the prognosis of COVID-19 patients. The functions of VD are dependent on the vitamin D receptor (VDR) in the VD/VDR signaling pathway. Therefore, we aimed to assess the association of VDR gene polymorphisms with COVID-19 outcomes.

    METHODS: In the present study, eight VDR single nucleotide polymorphisms (SNPs) were genotyped by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) in 500 COVID-19 patients in Iran, including 160 asymptomatic, 250 mild/moderate, and 90 severe/critical cases. The association of these polymorphisms with severity, clinical outcomes, and comorbidities were evaluated through the calculation of the Odds ratio (OR).

    RESULTS: Interestingly, significant associations were disclosed for some of the SNP-related alleles and/or genotypes in one or more genetic models with different clinical data in COVID-19 patients. Significant association of VDR-SNPs with signs, symptoms, and comorbidities was as follows: ApaI with shortness of breath (P ˂ 0.001) and asthma (P = 0.034) in severe/critical patients (group III); BsmI with chronic renal disease (P = 0.010) in mild/moderate patients (group II); Tru9I with vomiting (P = 0.031), shortness of breath (P = 0.04), and hypertension (P = 0.030); FokI with fever and hypertension (P = 0.027) in severe/critical patients (group III); CDX2 with shortness of breath (P = 0.022), hypertension (P = 0.036), and diabetes (P = 0.042) in severe/critical patients (group III); EcoRV with diabetes (P ˂ 0.001 and P = 0.045 in mild/moderate patients (group II) and severe/critical patients (group III), respectively). However, the association of VDR TaqI and BglI polymorphisms with clinical symptoms and comorbidities in COVID-19 patients was not significant.

    CONCLUSION: VDR gene polymorphisms might play critical roles in the vulnerability to infection and severity of COVID-19, probably by altering the risk of comorbidities. However, these results require further validation in larger studies with different ethnicities and geographical regions.

    Matched MeSH terms: Receptors, Calcitriol/genetics*
  5. Kong AN, Fong CY, Ng CC, Mohamed AR, Khoo TB, Ng RL, et al.
    Seizure, 2020 Jul;79:103-111.
    PMID: 32464532 DOI: 10.1016/j.seizure.2020.05.009
    PURPOSE: Children with epilepsy (CWE) are at risk of vitamin D deficiency. Single nucleotide polymorphisms (SNPs) affecting the vitamin D pathway are potentially important risk factors for serum 25-hydroxyvitamin D [25(OH)D] concentration. The aims of our study were to evaluate the association of vitamin d-related SNPs to serum 25(OH)D concentrations in Malaysian CWE.

    METHODS: Cross-sectional study of Malaysian ambulant CWE on antiseizure medication for >1 year. Sixteen SNPs in 8 genes (GC, VDR, CYP2R1, CYP24A1, CYP27B1, CYP27A1, CYP3A4, NADSYN1/DHCR7) were genotyped. Linear and logistic regression models and co-variates adjusted analyses were used. SNPs with significant associations were further analysed in a group of ethnically-matched healthy Malaysian children.

    RESULTS: 239 CWE were recruited (52.7% Malay, 24.3% Chinese and 23.0% Indian) with mean serum 25(OH)D of 58.8 nmol/L (SD 25.7). Prevalence of vitamin D deficiency (≤37.5 nmol/L) was 23.0%. Minor allele of GC-rs4588-A was associated with lower serum 25(OH)D in the meta-analysis of both CWE (β -8.11, P = 0.002) and Malaysian healthy children (β -5.08, P < 0.001), while VDR-rs7975232-A was significantly associated with reduced odds of vitamin D deficiency in Malay subgroup of CWE (OR: 0.16; 95% CI: 0.06-0.49; P = 0.001) and this association was not found in the healthy children group.

    CONCLUSIONS: Our results suggest that GC-rs4588 is associated with lower serum 25(OH)D concentration in both Malaysian CWE and healthy children, while VDR-rs7975232A is associated with lower risk of vitamin D deficiency in Malaysian CWE of Malay ethnicity. Our findings may assist in the genetic risk stratification of low vitamin D status among CWE.

    Matched MeSH terms: Receptors, Calcitriol/genetics
  6. Suaini NH, Koplin JJ, Ellis JA, Peters RL, Ponsonby AL, Dharmage SC, et al.
    J Steroid Biochem Mol Biol, 2014 Oct;144 Pt B:445-54.
    PMID: 25174667 DOI: 10.1016/j.jsbmb.2014.08.018
    We aimed to investigate the relationship between genetic and environmental exposure and vitamin D status at age one, stratified by ethnicity. This study included 563 12-month-old infants in the HealthNuts population-based study. DNA from participants' blood samples was genotyped using Sequenom MassARRAY MALDI-TOF system on 28 single nucleotide polymorphisms (SNPs) in six genes. Using logistic regression, we examined associations between environmental exposure and SNPs in vitamin D pathway and filaggrin genes and vitamin D insufficiency (VDI). VDI, defined as serum 25-hydroxyvitamin D3(25(OH)D3) level ≤50nmol/L, was measured using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Infants were stratified by ethnicity determined by parent's country of birth. Infants formula fed at 12 months were associated with reduced odds of VDI compared to infants with no current formula use at 12 months. This association differed by ethnicity (Pinteraction=0.01). The odds ratio (OR) of VDI was 0.29 for Caucasian infants (95% CI, 0.18-0.47) and 0.04 for Asian infants (95% CI, 0.006-0.23). Maternal vitamin D supplementation during pregnancy and/or breastfeeding were associated with increased odds of infants being VDI (OR, 2.39; 95% CI, 1.11-5.18 and OR, 2.5; 95% CI, 1.20-5.24 respectively). Presence of a minor allele for any GC SNP (rs17467825, rs1155563, rs2282679, rs3755967, rs4588, rs7041) was associated with increased odds of VDI. Caucasian infants homozygous (AA) for rs4588 had an OR of 2.49 of being associated with VDI (95% CI, 1.19-5.18). In a country without routine infant vitamin D supplementation or food chain fortification, formula use is strongly associated with a reduced risk of VDI regardless of ethnicity. There was borderline significance for an association between filaggrin mutations and VDI. However, polymorphisms in vitamin D pathway related genes were associated with increased likelihood of being VDI in infancy.
    Matched MeSH terms: Receptors, Calcitriol/genetics
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links