Displaying all 4 publications

Abstract:
Sort:
  1. Soga T, Dalpatadu SL, Wong DW, Parhar IS
    Neuroscience, 2012 Aug 30;218:56-64.
    PMID: 22626647 DOI: 10.1016/j.neuroscience.2012.05.023
    Synthetic glucocorticoid (dexamethasone; DEX) treatment during the neonatal stage is known to affect reproductive activity. However, it is still unknown whether neonatal stress activates gonadotropin-inhibitory hormone (GnIH) synthesizing cells in the dorsomedial hypothalamus (DMH), which could have pronounced suppressive action on gonadotropin-releasing hormone (GnRH) neurons, leading to delayed pubertal onset. This study was designed to determine the effect of neonatal DEX (1.0mg/kg) exposure on reproductive maturation. Therefore, GnRH, GnIH and GnIH receptors, G-protein coupled receptors (GPR) 147 and GPR74 mRNA levels were measured using quantitative real-time PCR in female mice at postnatal (P) days 21, 30 and in estrus stage mice, aged between P45-50. DEX-treated females of P45-50 had delayed vaginal opening, and irregular estrus cycles and lower GnRH expression in the preoptic area (POA) when compared with age-matched controls. The expression levels of GPR147 and GPR74 mRNA in the POA increased significantly in DEX-treated female mice of P21 and P45-50 compared to controls. In addition, GPR147 and GPR74 mRNA expression was observed in laser captured single GnRH neurons in the POA. Although there was no difference in GnIH mRNA expression in the DMH, immunostained GnIH cell numbers in the DMH increased in DEX-treated females of P45-50 compared to controls. Taken together, the results show that the delayed pubertal onset could be due to the inhibition of GnRH gene expression after neonatal DEX treatment, which may be accounted for in part by the inhibitory signals from the up-regulated GnIH-GnIH receptor pathway to the POA.
    Matched MeSH terms: Sexual Maturation/drug effects*
  2. Tan BL, Kassim NM, Mohd MA
    Toxicol Lett, 2003 Aug 28;143(3):261-70.
    PMID: 12849686
    The effects of bisphenol A and nonylphenol on pubertal development in the intact juvenile/peripubertal male Sprague-Dawley rats was observed in this study from PND23-52/53. Two groups of rats were administered orally with either 100 mg/kg body weight of nonylphenol or bisphenol A. Another group of rats were administered orally with a mixture of 100 mg/kg body weight of nonylphenol and bisphenol A. Control group was administered with the vehicle of Tween-80 with corn oil (1:9 v/v). Observations made in this study included growth, age at preputial separation, thyroid, liver, testis and kidney weight and histology, epididymal and seminal vesicle plus coagulation gland weight. Nonylphenol and bisphenol A have been observed to cause delay in puberty onset as well as testicular damage in the treatment groups when compared to the control; spermatogenesis was affected in most treated rats. Bisphenol A also caused the enlargement of the kidney and hydronephrosis. Administration of nonylphenol and bisphenol A as a mixture has caused less than additive effects.
    Matched MeSH terms: Sexual Maturation/drug effects*
  3. Jayachandra S, D'Souza UJ
    J Environ Sci Health B, 2014;49(4):271-8.
    PMID: 24502214 DOI: 10.1080/03601234.2014.868287
    The objective of this research is to study the possible reproductive adverse effects of diazinon on rat offspring exposed in utero and during lactation. Twenty-four Sprague-Dawley female rats (10-12 week old) were randomly assigned to four groups, each consisting of six rats. Group 1 served as the control and these rats were given normal saline orally. Rats in groups 2, 3, and 4 were administered diazinon, dissolved in saline at 10, 15, 30 mg/ kg(-1) body weight, per oral, once daily, during mating, pregnancy and lactation. The male offsprings were examined at puberty and adulthood for body weight, testis weight, epididymis weight, sperm count, motility and morphology, pituitary-gonadal hormone levels. At 30 mg kg(-1) dose, the male offsprings showed a decrease in testicular weight, sperm count, motility, with an increase in abnormal sperm percentage and a decline in pituitary-gonadal hormones, at puberty. Upon attaining adulthood, there was a decrease in testicular weight, sperm count and motility with an increase in abnormal sperm percentage and a decrease in pituitary hormone level. There was evidence of some adverse reproductive effects on the male offspring at the 15 mg/ kg(-1) dose. Most of the adverse effects were irreversible and were evident at both puberty and adulthood in the offsprings, although a few parameters reverted to the normal growth pattern. Diazinon is a reproductive toxicant for male offsprings if exposed during prenatal and postnatal phases.
    Matched MeSH terms: Sexual Maturation/drug effects
  4. Li G, Tang H, Chen Y, Yin Y, Ogawa S, Liu M, et al.
    Mol Cell Endocrinol, 2018 02 05;461:1-11.
    PMID: 28801227 DOI: 10.1016/j.mce.2017.08.003
    The LHb expression is up-regulated during puberty in female zebrafish. However, the molecular mechanism underlying how LHb expression is regulated during puberty remains largely unknown. In this study, we found that the mRNA expression levels of lhb, fshb and cyp19a1b were up-regulated along with the puberty onset in zebrafish. Among the three nuclear estrogen receptors (nERs), the esr2b is the only type whose expression is significantly up-regulated during puberty onset in the pituitary. However, in situ hybridization results revealed that lhb mRNA was colocalized with esr1 and esr2a but not esr2b. Exposure to estradiol (E2) significantly stimulates LHb expression in both wild-type and kiss1-/-;kiss2-/-;gnrh3-/- triple knockout pubertal zebrafish. Moreover, exposure of cultured pituitary cells to E2 increased the LHb expression, indicating that the estrogenic effect on LHb expression could be acted at the pituitary level. Finally, we cloned and analyzed the promoter of lhb by luciferase assay. Our results indicated that the E2 responsive regions of lhb promoter for ERα and ERβ2 are identical, suggesting that ERα and ERβ2 could bind to the same half ERE region of the promoter of lhb, exhibiting a classical ERE-dependent pathway. In summary, we demonstrate that E2 could directly act on the pituitary level to stimulate LHb transcription during puberty in zebrafish.
    Matched MeSH terms: Sexual Maturation/drug effects*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links