55% of a sample of patients in a rural
community, and 76% of a sample of patients and
staff in the local district hospital were found to
be nasal carriers for Staphylococcus aureus. The
in vitro antibiotic susceptibility patterns of 46
strains of S. aureus isolated in nasal carriers as
well as of 43 strains in community-acquired skin
infections were characterised. High levels of
resistance were expressed to penicillin (73%),
cephalexin (64%) and tetracycline (46%).
Resistance to erythromycin (18%) was moderate.
A few strains showed resistance to methicillin
(5 isolates), vancomycin (4), [usidic acid (3),
cotrimoxazole (1), and none to gentamicin.
Penicillin can no longer be recommended for
treating community-acquired S. aureus infections.
Microbial resistance to existing antibiotics has led to an increase in the use of medicinal plants that show beneficial effects for various infectious diseases. The study evaluates the susceptibility of multidrug resistant Staphylococcus aureus to Nigella sativa oil. Staphylococcus aureus was isolated from 34 diabetic patient's wounds attending the Renaissance hospital, Nsukka, Southeast Nigeria. The isolates were characterized and identified using standard microbiological techniques. Isolates were cultured and a comparative In vitro antibiotic susceptibility test was carried out using the disk diffusion method. Of the 34 samples collected, 19(56%) showed multidrug resistance to the commonly used antibiotics. Nigella sativa oil was then studied for antibacterial activity against these multidrug resistant isolates of Staphylococcus aureus in varying concentration by well diffusion method. The oil showed pronounced dose dependent antibacterial activity against the isolates. Out of 19 isolates, 8(42%) were sensitive to undiluted oil sample; 4(21%) of these showed sensitivity at 200 mg/ml, 400 mg/ml and 800 mg/ml respectively. Eleven (58%) of the isolates were completely resistant to all the oil concentrations. The present study, reports the isolation of multi-drug resistant S. aureus from diabetic wounds and that more than half of isolates were susceptible to different concentrations N. sativa oil.
The exoproteome of Staphylococcus aureus contains enzymes and virulence factors that are important for host adaptation. We investigated the exoprotein profiles and cytokine/chemokine responses obtained in three different S. aureus-host interaction scenarios by using two-dimensional gel electrophoresis (2-DGE) and two-dimensional immunoblotting (2D-IB) combined with tandem mass spectrometry (MS/MS) and cytometric bead array techniques. The scenarios included S. aureus bacteremia, skin and soft tissue infections (SSTIs), and healthy carriage. By the 2-DGE approach, 12 exoproteins (the chaperone protein DnaK, a phosphoglycerate kinase [Pgk], the chaperone GroEL, a multisensor hybrid histidine kinase, a 3-methyl-2-oxobutanoate hydroxymethyltransferase [PanB], cysteine synthase A, an N-acetyltransferase, four isoforms of elongation factor Tu [EF-Tu], and one signature protein spot that could not be reliably identified by MS/MS) were found to be consistently present in more than 50% of the bacteremia isolates, while none of the SSTI or healthy-carrier isolates showed any of these proteins. By the 2D-IB approach, we also identified five antigens (methionine aminopeptidase [MetAPs], exotoxin 15 [Set15], a peptidoglycan hydrolase [LytM], an alkyl hydroperoxide reductase [AhpC], and a haptoglobin-binding heme uptake protein [HarA]) specific for SSTI cases. Cytokine and chemokine production varied during the course of different infection types and carriage. Monokine induced by gamma interferon (MIG) was more highly stimulated in bacteremia patients than in SSTI patients and healthy carriers, especially during the acute phase of infection. MIG could therefore be further explored as a potential biomarker of bacteremia. In conclusion, 12 exoproteins from bacteremia isolates, MIG production, and five antigenic proteins identified during SSTIs should be further investigated for potential use as diagnostic markers.