Displaying all 4 publications

Abstract:
Sort:
  1. Schönbach C, Li J, Ma L, Horton P, Sjaugi MF, Ranganathan S
    BMC Genomics, 2018 01 19;19(Suppl 1):920.
    PMID: 29363432 DOI: 10.1186/s12864-017-4326-x
    The 16th International Conference on Bioinformatics (InCoB) was held at Tsinghua University, Shenzhen from September 20 to 22, 2017. The annual conference of the Asia-Pacific Bioinformatics Network featured six keynotes, two invited talks, a panel discussion on big data driven bioinformatics and precision medicine, and 66 oral presentations of accepted research articles or posters. Fifty-seven articles comprising a topic assortment of algorithms, biomolecular networks, cancer and disease informatics, drug-target interactions and drug efficacy, gene regulation and expression, imaging, immunoinformatics, metagenomics, next generation sequencing for genomics and transcriptomics, ontologies, post-translational modification, and structural bioinformatics are the subject of this editorial for the InCoB2017 supplement issues in BMC Genomics, BMC Bioinformatics, BMC Systems Biology and BMC Medical Genomics. New Delhi will be the location of InCoB2018, scheduled for September 26-28, 2018.
    Matched MeSH terms: Systems Biology/methods*
  2. Mohd Yusoff MI
    Comput Math Methods Med, 2020;2020:9328414.
    PMID: 33224268 DOI: 10.1155/2020/9328414
    Researchers used a hybrid model (a combination of health resource demand model and disease transmission model), Bayesian model, and susceptible-exposed-infectious-removed (SEIR) model to predict health service utilization and deaths and mixed-effect nonlinear regression. Further, they used the mixture model to predict the number of confirmed cases and deaths or to predict when the curve would flatten. In this article, we show, through scenarios developed using system dynamics methodology, besides close to real-world results, the detrimental effects of ignoring social distancing guidelines (in terms of the number of people infected, which decreased as the percentage of noncompliance decreased).
    Matched MeSH terms: Systems Biology/methods
  3. Muniyandi RC, Zin AM, Sanders JW
    Biosystems, 2013 Dec;114(3):219-26.
    PMID: 24120990 DOI: 10.1016/j.biosystems.2013.09.008
    This paper presents a method to convert the deterministic, continuous representation of a biological system by ordinary differential equations into a non-deterministic, discrete membrane computation. The dynamics of the membrane computation is governed by rewrite rules operating at certain rates. That has the advantage of applying accurately to small systems, and to expressing rates of change that are determined locally, by region, but not necessary globally. Such spatial information augments the standard differentiable approach to provide a more realistic model. A biological case study of the ligand-receptor network of protein TGF-β is used to validate the effectiveness of the conversion method. It demonstrates the sense in which the behaviours and properties of the system are better preserved in the membrane computing model, suggesting that the proposed conversion method may prove useful for biological systems in particular.
    Matched MeSH terms: Systems Biology/methods*
  4. Abdullah A, Deris S, Mohamad MS, Anwar S
    PLoS One, 2013;8(4):e61258.
    PMID: 23593445 DOI: 10.1371/journal.pone.0061258
    One of the key aspects of computational systems biology is the investigation on the dynamic biological processes within cells. Computational models are often required to elucidate the mechanisms and principles driving the processes because of the nonlinearity and complexity. The models usually incorporate a set of parameters that signify the physical properties of the actual biological systems. In most cases, these parameters are estimated by fitting the model outputs with the corresponding experimental data. However, this is a challenging task because the available experimental data are frequently noisy and incomplete. In this paper, a new hybrid optimization method is proposed to estimate these parameters from the noisy and incomplete experimental data. The proposed method, called Swarm-based Chemical Reaction Optimization, integrates the evolutionary searching strategy employed by the Chemical Reaction Optimization, into the neighbouring searching strategy of the Firefly Algorithm method. The effectiveness of the method was evaluated using a simulated nonlinear model and two biological models: synthetic transcriptional oscillators, and extracellular protease production models. The results showed that the accuracy and computational speed of the proposed method were better than the existing Differential Evolution, Firefly Algorithm and Chemical Reaction Optimization methods. The reliability of the estimated parameters was statistically validated, which suggests that the model outputs produced by these parameters were valid even when noisy and incomplete experimental data were used. Additionally, Akaike Information Criterion was employed to evaluate the model selection, which highlighted the capability of the proposed method in choosing a plausible model based on the experimental data. In conclusion, this paper presents the effectiveness of the proposed method for parameter estimation and model selection problems using noisy and incomplete experimental data. This study is hoped to provide a new insight in developing more accurate and reliable biological models based on limited and low quality experimental data.
    Matched MeSH terms: Systems Biology/methods*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links