Human dihydrofolate reductase (DHFR) is a conserved enzyme that is central to folate metabolism and is widely targeted in pathogenic diseases as well as cancers. Although studies have reported the fact that genetic mutations in DHFR leads to a rare autosomal recessive inborn error of folate metabolism and drug resistance, there is a lack of an extensive study on how the deleterious non-synonymous SNPs (nsSNPs) disrupt its phenotypic effects. In this study, we aim at discovering the structural and functional consequences of nsSNPs in DHFR by employing a combined computational approach consisting of ten recently developed in silico tools for identification of damaging nsSNPs and molecular dynamics (MD) simulation for getting deeper insights into the magnitudes of damaging effects. Our study revealed the presence of 12 most deleterious nsSNPs affecting the native phenotypic effects, with three (R71T, G118D, Y122D) identified in the co-factor and ligand binding active sites. MD simulations also suggested that these three SNPs particularly Y122D, alter the overall structural flexibility and dynamics of the native DHFR protein which can provide more understandings into the crucial roles of these mutants in influencing the loss of DHFR function.
Suzuki-Miyaura cross-coupling of 6-bromo-2-styrylquinazolin-4(3H)-ones with arylboronic acids afforded a series of novel 6-aryl-2-styrylquinazolin-4(3H)-ones. These compounds were evaluated for potential anticancer properties against the human renal (TK-10), melanoma (UACC-62) and breast cancer (MCF-7) cell lines. Their antimicrobial properties were also evaluated against six Gram-positive and four Gram-negative bacteria, as well as two strains of fungi. Molecular docking studies (in silico) were conducted on compounds 5a, b, d and 6a, b, d-f to recognize the hypothetical binding motif of the title compounds within the active site of the dihydrofolate reductase and thymidylate synthase enzymes.
In the present study, the novel Ag/cellulose nanocrystal (CNC)-doped CeO2 quantum dots (QDs) with highly efficient catalytic performance were synthesized using one pot co-precipitation technique, which were then applied in the degradation of methylene blue and ciprofloxacin (MBCF) in wastewater. Catalytic activity against MBCF dye was significantly reduced (99.3%) for (4%) Ag dopant concentration in acidic medium. For Ag/CNC-doped CeO2 vast inhibition domain of G-ve was significantly confirmed as (5.25-11.70 mm) and (7.15-13.60 mm), while medium- to high-concentration of CNC levels were calculated for G + ve (0.95 nm, 1.65 mm), respectively. Overall, (4%) Ag/CNC-doped CeO2 revealed significant antimicrobial activity against G-ve relative to G + ve at both concentrations, respectively. Furthermore, in silico molecular docking studies were performed against selected enzyme targets dihydrofolate reductase (DHFR), dihydropteroate synthase (DHPS), and DNA gyrase belonging to folate and nucleic acid biosynthetic pathway, respectively to rationalize possible mechanism behind bactericidal potential of CNC-CeO2 and Ag/CNC-CeO2.