Displaying all 6 publications

Abstract:
Sort:
  1. Houghton JD, Hays GC
    Naturwissenschaften, 2001 Mar;88(3):133-6.
    PMID: 11402844
    For many decades it has been accepted that marine turtle hatchlings from the same nest generally emerge from the sand together. However, for loggerhead turtles (Caretta caretta) nesting on the Greek Island of Kefalonia, a more asynchronous pattern of emergence has been documented. By placing temperature loggers at the top and bottom of nests laid on Kefalonia during 1998, we examined whether this asynchronous emergence was related to the thermal conditions within nests. Pronounced thermal variation existed not only between, but also within, individual nests. These within-nest temperature differences were related to the patterns of hatchling emergence, with hatchlings from nests displaying large thermal ranges emerging over a longer time-scale than those characterised by more uniform temperatures. In many egg-laying animals, parental care of the offspring may continue while the eggs are incubating and also after they have hatched. Consequently, the importance of the nest site for determining incubation conditions may be reduced since the parents themselves may alter the local environment. By contrast, in marine turtles, parental care ceases once the eggs have been laid and the nest site covered. The positioning of the nest site, in both space and time, may therefore have profound effects for marine turtles by affecting, for example, the survival of the eggs and hatchlings as well as their sex (Janzen and Paukstis 1991). During incubation, sea turtle embryos grow from a few cells at oviposition to a self-sufficient organism at hatching some 50-80 days later (Ackerman 1997). After hatching, the young turtles dig up through the sand and emerge typically en masse at the surface 1-7 nights later, with a number of stragglers following over the next few nights (Christens 1990). This contrasts with the frequently observed pattern of hatching asynchrony in birds. It has been suggested that the cause of mass emergence in turtles is that eggs within a clutch are fertilised within a short period of time and then, when thermal conditions within the nest are uniform, develop at very similar rates and hence hatch and emerge together (Porter 1972). As a corollary of this idea, it would be predicted that when there are pronounced within-nest thermal gradients, development rates of siblings will be different and hence asynchronous hatching and emergence might occur. While it may be energetically beneficial for hatchlings to emerge in a group (Carr and Hirth 1961), if the extent of hatching asynchrony is marked then there may be severe costs for individuals if they wait for all their siblings to hatch before attempting to dig out of the sand (Hays and Speakman 1992). Under such conditions, the protracted emergence of small groups of hatchlings over several nights may be favoured. Examination of the literature suggests that emergence asynchrony may be more widespread than generally considered. For example, Witherington et al. (1990) described loggerhead turtle hatchlings (Caretta caretta) emerging over 4 days in Florida; for green turtles (Chelonia mydas), Hendrickson (1958) documented that nests in Malaysia and Sarawak produced hatchlings for up to 8 days; whilst Diamond (1976) found that hawksbill (Eretmochelys imbricata) nests on Cousin Island, Seychelles, were active for up to 4 days. Similarly, on the Greek Island of Kefalonia, we have shown that emergence from individual loggerhead turtle nests may occur on up to 11 nights (Hays and Speakman 1992). It is logical to suppose that asynchronous emergence relates to thermal gradients within nests, since the incubation duration of sea turtle eggs is related to temperature, with eggs hatching quicker when the temperature is higher. Here we test this hypothesis by measuring thermal variations within loggerhead turtle nests and comparing these variations to the patterns of hatchling emergence.
    Matched MeSH terms: Turtles/physiology*
  2. Rusli MU, Booth DT, Joseph J
    J Exp Biol, 2016 05 15;219(Pt 10):1505-13.
    PMID: 27207954 DOI: 10.1242/jeb.134742
    A potential advantage of group movement in animals is increased locomotion efficiency. This implies a reduced energetic cost for individuals that occur in larger groups such as herds, flocks and schools. When chelonian hatchlings hatch in the underground nest with finite energy for their post-hatching dispersal phase, they face the challenge of minimizing energetic expenditure while escaping the nest. The term 'social facilitation' has been used to describe the combined digging effort of sea turtle hatchlings during nest escape. Given that in a normal clutch, a substantial part of the energy reserve within the residual yolk is used by hatchlings in the digging out process, a decreased cohort size may reduce the energy reserve available to cross the beach and sustain the initial swimming frenzy. This hypothesis was experimentally tested by varying cohort size in hatchling green turtles (Chelonia mydas) and measuring energy expenditure during the nest escape process using open-flow respirometry. The energetic cost of escaping through 40 cm of sand was calculated to vary between 4.4 and 28.3 kJ per individual, the cost decreasing as the number of individuals in the cohort increased. This represents 11-68% of the energy contained in a hatchling's residual yolk at hatching. The reduced energetic cost associated with large cohorts resulted from both a lower metabolic rate per individual and a shortened nest escape time. We conclude that synchronous digging activity of many hatchlings during nest escape evolved not only to facilitate rapid nest emergence but also to reduce the energetic cost to individuals.
    Matched MeSH terms: Turtles/physiology*
  3. Wilson JJ, Sing KW, Chen PN, Zieritz A
    PMID: 28885060 DOI: 10.1080/24701394.2017.1373109
    Environmental DNA detection has emerged as a powerful tool to monitor aquatic species without the need for capture or visual identification and is particularly useful for rare or elusive species. Our objective was to develop an eDNA approach for detecting the southern river terrapin (Batagur affinis) in Malaysia. We designed species-specific primers for a fragment of B. affinis mtDNA and evaluated their effectiveness in silico, in vitro and in situ. The primers amplified 110 bp of the cytochrome b mtDNA sequence of B. affinis from aquarium water samples housing nine juvenile B. affinis. We also successfully detected B. affinis eDNA from river samples taken from a site where turtles were known to be in the vicinity. Prospects and challenges of using an eDNA approach to help determine the distribution of B. affinis, essential information for an effective conservation plan, are discussed.
    Matched MeSH terms: Turtles/physiology
  4. Mashkour N, Jones K, Kophamel S, Hipolito T, Ahasan S, Walker G, et al.
    PLoS One, 2020;15(10):e0230760.
    PMID: 33095793 DOI: 10.1371/journal.pone.0230760
    The impact of a range of different threats has resulted in the listing of six out of seven sea turtle species on the IUCN Red List of endangered species. Disease risk analysis (DRA) tools are designed to provide objective, repeatable and documented assessment of the disease risks for a population and measures to reduce these risks through management options. To the best of our knowledge, DRAs have not previously been published for sea turtles, although disease is reported to contribute to sea turtle population decline. Here, a comprehensive list of health hazards is provided for all seven species of sea turtles. The possible risk these hazards pose to the health of sea turtles were assessed and "One Health" aspects of interacting with sea turtles were also investigated. The risk assessment was undertaken in collaboration with more than 30 experts in the field including veterinarians, microbiologists, social scientists, epidemiologists and stakeholders, in the form of two international workshops and one local workshop. The general finding of the DRA was the distinct lack of knowledge regarding a link between the presence of pathogens and diseases manifestation in sea turtles. A higher rate of disease in immunocompromised individuals was repeatedly reported and a possible link between immunosuppression and environmental contaminants as a result of anthropogenic influences was suggested. Society based conservation initiatives and as a result the cultural and social aspect of interacting with sea turtles appeared to need more attention and research. A risk management workshop was carried out to acquire the insights of local policy makers about management options for the risks relevant to Queensland and the options were evaluated considering their feasibility and effectiveness. The sea turtle DRA presented here, is a structured guide for future risk assessments to be used in specific scenarios such as translocation and head-starting programs.
    Matched MeSH terms: Turtles/physiology*
  5. Kolandaiveloo V, Kalaiselvam R, Fong MWC, Mustapa MS, Souce RM, Sugnaseelan S, et al.
    J Vet Med Sci, 2020 Apr 15;82(4):497-502.
    PMID: 32101821 DOI: 10.1292/jvms.19-0477
    Chelonian exhibit temperature dependent sex determination, and ex situ incubation of eggs in conservation hatcheries may render a gender bias. The gender of juvenile Painted terrapins (Batagur borneoensis) produced at a conservation hatchery in Malaysia was determined by endoscopy of the gonads. Circulating reproductive hormones (testosterone, progesterone and estradiol) were profiled for 31 juveniles and nine captive-reared non-breeding adult terrapins. Endoscopy revealed a gender bias of 96.8% (30/31) females. Testosterone levels in the juvenile females (2.49 ± 1.29) were significantly lower than that of the adult females (12.20 ± 4.29), and lower than values in the juvenile male (9.36) and adult males (27.60, 35.62). The progesterone levels in the juvenile females (107.12 ± 68.68) were significantly higher than that of the adult females (51.13 ± 24.67), but lower than values in the juvenile male (33.27) and adult males (3.43, 8.51). Estrogen levels were significantly lower in the juvenile females (1.57 ± 1.35) compared to the adult females (77.46 ± 53.45). Negative correlations were observed between levels of progesterone and testosterone, and progesterone and estrogen. A positive correlation was noted between estrogen and testosterone. The present study constitutes the first attempt to determine the gender and reproductive hormone profiles of juvenile Painted terrapins produced by ex situ incubation, and captive non-breeding adults. Endoscopy of the gonads is a useful techniques for gender determination among juvenile turtles, while the use of testosterone as a gender biomarker warrants further investigation.
    Matched MeSH terms: Turtles/physiology*
  6. Ng CKY, Lam JCW, Zhang XH, Gu HX, Li TH, Ye MB, et al.
    Environ Pollut, 2018 Mar;234:735-742.
    PMID: 29245147 DOI: 10.1016/j.envpol.2017.11.100
    Sea turtles are globally endangered and face daily anthropogenic threats, including pollution. However, there is a lack of ecotoxicological information on sea turtles, especially in the Asia-Pacific region. This study aims to determine pollutant levels of foraging green turtles (Chelonia mydas) in South China, including Hong Kong, Guangdong and Taiwan, as a basis for their conservation. Scute, liver and muscle tissues of stranded green turtles were analysed for levels of 17 trace elements and methylmercury (MeHg) (n = 86 for scute and n = 14 for liver) and polybrominated diphenyl ethers (PBDEs) (n = 11 for muscle and n = 13 for liver). Ten-fold higher levels of Pb, Ba, V and Tl and 40-fold greater Cd levels were measured in green turtle livers in South China relative to other studies conducted over 10 years ago. Measured PBDE levels were also 27-fold and 50-fold greater than those reported in Australia and Japan. These results warrant further investigation of potential toxicological risks to green turtles in South China and their source rookeries in Malaysia, Micronesia, Indonesia, Marshall Islands, Japan and Taiwan. Research should target monitoring pollutant levels in sea turtles within the West Pacific/Southeast Asia regional management unit spanning East Asia to Southeast Asia to fill in knowledge gaps, in particular in areas such as Thailand, Vietnam, Indonesia, Malaysia and the Philippines where less or no data is available and where foraging grounds of sea turtles have been identified.
    Matched MeSH terms: Turtles/physiology*
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links