There are a large number of primary structural planes of deep rock ore such as rhyolite, and bedding, which are well preserved and are often the geological interfaces of mineralization. Study on the occurrence of these structural planes is helpful to understand the extension direction of deep veins. Using borehole imaging technology as the means of acquiring information of structural plane, the magnetic angle of the borehole is obtained by using the gyroscope and the magnetic instrument and the structural plane occurrence is modified to obtain the accurate information. According to the depth effect of the deep structural plane, the concept of the feature point pair is proposed. In this paper, the mathematical description method of the structural plane in the space coordinate system is established and the information of the shape and depth of the structure plane is transformed into the 3D point coordinates in the space coordinate system. Based on the feature points, the connectivity analysis method of structural plane is established and the connectivity of the structural planes such as the interface of the vein and rhyolite is analyzed. According to the stratigraphic information in the borehole image, the extension direction of the whole field is determined. The feasibility of the method is verified by the application in a magnetite in Anhui Province, China. The results are in good agreement with the actual drilling results and the error of traditional drilling analysis is corrected. The main conclusions of this paper include: The use of gyroscopes and magnetic instrument can obtain the magnetic effect angle, to modify the structural plane information; and multi borehole structural planes connectivity analysis can provide a reference for the extension of the deep veins.
MeSH terms: Bedding and Linens; Beds; China; Geology; Ferrosoferric Oxide
The DEM construction of high and steep slope has great importance to slope disaster monitoring. The conventional method used to construct high and steep slope DEM model requires larger field surveying workload. First of all, the high and steep slope image was obtained through unmanned aerial vehicle (UAV) platform; Then the SIFT algorithm is used to extract the feature points which are going to be matched accurately by using RANSAC algorithm. Finally, stereo pair splicing method is used to generate orthogonal images and construct DEM model. After comparing the DEM model with actual slope measurement result collected by total station finding, it is shown that elevation error between the DEM model constructed by unmanned aerial vehicle (UAV) and actual measurement is minimal and its efficiency is proven.
Airborne prospecting (spectrum, magnetics) measurement is an effectively auxiliary approach for geological mapping. It effectively measures the magnetic field characteristics and the surface contents of the most common three radioactive elements (K,eU and eTh) of nature in the research area. Given the significant diversities of magnetic characteristics and the radioelements’ contents of different lithological units, these can be applied into the mapping of shallow overburden area. Ternary MAP is a compound imaging technology, providing the radioelements contents a simultaneous display on the same pixel. Based on colour differences, this technology can identify different lithologies and clithofacial changes in the same lithological unit effectively in a certain area. With aeromagnetic data conversion and integrated spectrum images, a good effectiveness of 1:250,000 lithological-structural mapping has been achieved in the research area of Northwestern Angola.
Shear strength is currently a significant parameter in the design of cemented sand gravel and rock (CSGR) dams. Shear strength tests were carried out to compare material without layers noumenon and layer condition. The experimental results showed good linearity in the curves of shear strength and pure grinding tests with correlation coefficients of nearly 97%. The friction coefficient was similar to that of C10 roller-compacted concrete (RCC), but the cohesion value was weaker than that of RCC. The shear strength of the CSGR layers decreased by 40% when retarding mixtures were not added and the layer was paved immediately after 4 h of waiting interval.
A large number of shallow buried tunnels are built in the city nowadays and the special strata such as large upper-soft and lower-hard ground often encountered. Deformation control of strata is the focus issue related to the construction safety. Based on Dalian metro Hing Street station with the classical geological condition of upper-soft and lower-hard ground, this paper fully used a combined control method including six different support measures to control the deformation of surrounding rock. 3D finite element model was setup to analyze the construction effect of combined control measures and the monitoring in-site was carried out to verify the deformation control effect of combined control method. It shows that the maximum surface subsidence value is gradually reduced with the support measures gradually increasing. In the case of various supports the maximum sedimentation value is 2.67 cm, which is 42. 1% lower than that of not using control method and the control effect is obvious. In addition, it can be seen that the two-layer initial support and additional large arch foot have the best effect on controlling the ground surface settlement with reduction of 11.7% and 20.2%, respectively. The research results can provide practical experience for the construction of such tunnels, and guide the design and construction of the tunnel in the future.
MeSH terms: Geology; Hardness; Paper; Finite Element Analysis; Physical Phenomena
The development and utilization of clean energy has long been a focus of research. In the coal bed methane field, most coal bed biogenic methane experiments are small static sample tests in which the initial conditions are set and the process cannot be batch-fed elements and microbial strains, and the gas cannot be collected in batches. Although significant results have been achieved in the coal-to-biogenic methane conversion in China, findings are restricted to the laboratory scale. No successful commercialization of coal bed biogenic methane production has been achieved yet. This study used a large-capacity fermentation tank (5 L) to conduct biogenic methane experiments. Results were compared to those from the traditional laboratory test. The gas production rate and gas concentration were higher when the 250 mL methane test volume was increased to a 5 L fermentation volume, increasing by 20.9% and 2.3%, respectively. The inhibition effect of the liquid phase products was reduced in the large fermentation tank, and the microbial activity was extended by batch feeding trace elements (iron and nickel) and methane strains and by semi-continuous collection of the gas. However, the gas conversion rate can be increased by retaining the H2 and CO2 in the intermediate gas products in the fermentation tank. The gas production rate was increased from 17.9 to 24.6 mL/g, increasing by 37.4%. The simulation pilot test can lay a foundation for the transition from a coal bed biogenic methane laboratory static small sample test to a dynamic pilot test, optimizing the process parameters to improve the reaction efficiency and move forward to commercialization test.
The serious deterioration of the ecological environment comes from a large number of geological disasters. These disasters were caused by a number of engineering activities. Ecological restoration is an important measure to reduce geological disasters and protect the ecological environment. On the basis of the introduction of cast-in-situ grids technology, external-soil spray seeding technology and vegetation bag technology, according to the ecological restoration experiment of the road slope attach to the Three Gorges Pumped-Storage Power Station in Hohhot, decision analysis of slope ecological restoration is done with AHP. It is shown that in arid and semi-arid area, selection of slope ecological restoration scheme mainly needs considering the ecological effect and stability. The major factor of ecological effects is survival rate of vegetation. The major factor of stability is the stability in a whole. Cast-in-situ grids technology will be the first choice for ecological restoration of road slope in arid and semi-arid area. This study provides reference for decision of the slope ecological restoration in arid and semi-arid region.
On the basis of landslide surge model test by adopting generalized simulation of waterways, this paper, for the first time, established a four-dimensional mathematical model between wave height transmissibility rate and the initial wave height, water depth, azimuth angle as well as propagation distance through utilizing the method of tensor space mapping. Using the new model, we proposed an empirical wave field covering all areas of the channel including the attenuation area within the width of a landslide mass, the straight channel attenuation area outside the width of the landslide mass, the curved channel attenuation area and the after-curve attenuation area, which comprehensively reflects the progressive changes of surge wave factors. The transmissibility of wave height and propagation distance are in a bivariate negative exponential distribution, and the wave height gradually reduces and the attenuation also slows down as the propagation distance increases; wave height transmissibility rate, azimuth and propagation distance are in a trivariate negative exponential distribution, the attenuation of the wave height in the straight channel within the width of the landslide mass was the slowest, followed by that of wave in the straight channel outside the width of the landslide mass, and the attenuation of the wave height in the curved channel is the greatest. This empirical wave field was based on test data, scientifically abstracted the general regularity of the propagation and attenuation of landslide surge, which can be applied to similar analyses and forecasts on landslide surge and can scientifically and accurately determine the damage range of landslide surge.
The development degree of fissure water in underground rock is a great trouble to the construction of railway tunnel, which will cause a series of environmental geological problems. Take the surrounding rock-section of the typical red clay in Lvliang-Mt. railway tunnel below the underground water level as an example, several aspects about the red clay surrounding rock will be researched, including pore water pressure, volume moisture content, stress of surrounding rock, vault subsidence and horizontal convergence through the field monitoring. Taking into account the importance of railway tunnel engineering, the large shear test of red clay was carried out at the construction site specially and the reliable situ shear strength parameters of surrounding rock will be obtained. These investigations and field tests helped to do a series of work: Three dimensional finite element numerical model of railway tunnel will be established, the deformation law of the red clay surrounding rock will be investigated, respectively, for the water-stress coupling effect and without considering it, the variation of the pore water pressure during excavation, the influence degree about the displacement field and stress field of water-stress coupling on red clay-rock will be discussed and the mechanism of the surrounding rock deformation will be submitted. Finally, the paper puts forward the feasible drainage scheme of the surrounding rock and the tunnel cathode. The geological environment safety of tunnel construction is effectively protected.
In mining process, the height of water flowing fractured zone is important significance to prevent mine of water and gas, in order to further research the failure characteristic of the overlying strata. Taking certain coal mine with 5.82 m mining height as the experimental face, by using the equipment which is sealed two ends by capsules in borehole, affused measurable water between the two capsules and borehole televiewer system, ground penetrating radar, microseismic monitoring system in underground coal mine, the height of water flowing fractured zone of fully-mechanized top caving are monitored, a numerical simulation experiment on the failure process was conducted, a similarity simulation experiment on the cracks evolution was conducted, at the same time, empirical formula of traditional was modified, The results showed that the height of caving and fractured zones were respectively 43.1 and 86.7 m in fully mechanized sub-level caving mining. The data difference of each test method of caving, fractured and water flowing fractured zones were respectively less than 4.5%, 7.1% and 9.0%. The degree of fracture development was low before mining, the number of fissures was obviously increased after mining, the degree of fracture development increased. The fractures cluster region mainly focuses near the coal wall. The fractures density distribution curves of overlying strata like sanke-shapes. The new and adapt to certain coal mine geological conditions empirical formula of water flowing fractured zone height is proposed.
In western China, with plenty of transportation infrastructures being constructed, many man-made slopes have been formed in the highway constructions along the highway routes. Fortunately, most of these man-made slopes were in middle or small scales. However, in the procedure of slope design as well as potential landslides controlling, there are many problems and error viewpoints, such as slope angle is determined mainly on the basis of designers’ experience without considering the lifetime of control projects, calculating slope satiability and optionally choosing remedial measurements. If not well resolved, these problems will affect not only the safety of highway operation, but also project investment. Based on the experiences in the highway engineering, these problems have been summarized in detailed and discussed in this paper. Some advices have also been put forward, which could be beneficial to the highway construction and operation.
Prevention and mitigation of rainfall induced geological hazards after the Ms=8 Wenchuan earthquake on May 12th, 2008 were significant for rebuild of earthquake hit regions. After the Wenchuan earthquake, there were tens of thousands of fractured slopes which were broken and loosened by the ground shaking, they were very susceptible to heavy rainfall and change forms into potential debris flows. In order to carry out this disaster reduction and prediction effectively in Longmenshan region, careful real-time monitoring and pre-warning of mountain hazards in both regional and site-specific scales is reasonable as alternatives in Wenchuan earthquake regions. For pre-warning the failure of fractured slopes induced by rainfall, the threshold value or the critical value of the precipitation of hazards should be proposed. However, the identification of critical criterion and parameters to pre-warning is the most difficult issue in mountainous hazards monitoring and pre-warning system especially in the elusive and massive fractured slopes widespread in Wenchuan earthquake regions. In this study, a natural coseismic fractured landslide in the Taziping village, Hongkou County, Dujianyan City, was selected to conduct the field experimental test, in order to identify the threshold parameters and critical criterion of the fractured slopes of Taziping. After the field experimental test, the correlation of rainfall intensity, rainfall duration and accumulative rainfall was investigated. The field experimental test was capable of identifying the threshold factors for failure of rainfall-induced fractured slopes after the giant earthquake.
The #3 coal seam of Jinsheng Rundong Ltd. of Jin-Coal Group in Shanxi Province, China, has high gas content and pressure; however, it has a low gas permeability, which can easily cause gas enrichment and may cause accidents of coal and gas outbursts. In this work, the characteristics of gas seepage were thoroughly studied by designing and modifying the ‘complete stress-strain tri-axial servo temperature-controlled test system’. The study was conducted based on four factors: Axial pressure, confining pressure, effective stress and gas pressure. We found that the axial pressure has a weak impact on coal gas permeability, indicated by a linear relationship. The confining pressure, however, has a strong impact on gas permeability, showing an exponential relationship. The relationship between permeability and gas pressure was identified as a second-order polynomial function. The functional relationship between gas permeability and axial pressure, confining pressure, effective stress, gas pressure was analyzed. Investigation into the natural flow rate of gas, concentration of gas drainage and damping coefficient supported the conclusion from the experimental study on the characteristics of gas seepage under loaded stress.
n this paper, transformation and differentiation of Henstock-Wiener integrals are discussed. The approach is by Riemann sums. The idea is more transparent than that of classical Wiener integral.
A hybrid climate model (HCM) is a novel proposed model based on the combination of self-organizing map (SOM) and analog method (AM). The main purpose was to improve the accuracy in rainfall forecasting using HCM. In combination process of HCM, SOM algorithm classifies high dimensional input data to low dimensional of several disjointed clusters in which similar input is grouped. AM searches the future day that has similar property with the day in the past. Consequently, the analog day is mapped to each cluster of SOM to investigate rainfall. In this study, the input data, geopotential height at 850 hPa from the Climate Forecast System Reanalysis (CFSR) are training set data and also the complete rainfall data at 30-meteorological stations from Thai meteorological department (TMD) are observed. To improve capability of rainfall forecasting, three different measures were evaluated. The experimental results showed that the performance of HCM is better than the traditional AM. It is illustrated that the HCM can forecast rainfall proficiently.
Left-truncated and censored survival data are commonly encountered in medical studies. However, traditional inferential methods that heavily rely on normality assumptions often fail when lifetimes of observations in a study are both truncated and censored. Thus, it is important to develop alternative inferential procedures that ease the assumptions of normality and unconventionally relies on the distribution of data in hand. In this research, a three parameter log-normal parametric survival model was extended to incorporate left-truncated and right censored medical data with covariates. Following that, bootstrap inferential procedures using non-parametric and parametric bootstrap samples were applied to the parameters of this model. The performance of the parameter estimates was assessed at various combinations of truncation and censoring levels via a simulation study. The recommended bootstrap intervals were applied to a lung cancer survival data.
Enhancing the catalytic activity of titania (TiO2) nanomaterials by controlling the size, surface area and percentage of highly reactive exposed {001} facets has become attractive in the recent years because of its wider applications in the different fields of scientific research. In the present study, anatase TiO2 nano-sized sheets (TNS) were synthesized using a simple ethanol assisted solvothermal chemical route. The TNS structures were characterized using Field Emission Scanning Electron Microscopy (FE-SEM), Transmission electron microscopic (TEM), Raman analysis, X-ray diffraction (XRD) and Accelerated surface area and porosimetry (ASAP) analysis. The results from TEM, Raman and XRD analysis confirmed the presence of anatase crystalline structure of TNS with the size range of 20-40 nm. The synthesized TNS structures possess 60% of highly reactive exposed {001} facets with a total surface area of 73 m²/g. These tremendous crystalline properties of solvothermally synthesized TNS structure makes it as an attractive catalyst for environmental and bio-fuel applications.
Zinc oxide (ZnO) utilization in advanced oxidation process (AOP) via solar-photocatalytic process was a promising method for alternative treating wastewater containing phenol. The ZnO photocatalyst semiconductor was synthesized by sol-gel method. The morphology of the ZnO nanostructures was observed by using scanning electron microscope (SEM) and the crystallite phase of the ZnO was confirmed by x-ray diffraction (XRD). The objective of this study was to synthesis ZnO nanoparticles through a sol-gel method for application as a photocatalyst in the photodegradation of phenol under solar light irradiation. The photodegradation rate of phenol increased with the increasing of ZnO loading from 0.2 until 1.0 g. Only 2 h were required for synthesized ZnO to fully degrade the phenol. The synthesized ZnO are capable to totally degrade high initial concentration up until 45 mg L-1 within 6 h of reaction time. The photodegradation of phenol by ZnO are most favoured under the acidic condition (pH3) where the 100% removal achieved after 2 h of reaction. The mineralization of phenol was monitored through chemical oxygen demand (COD) reduction and 92.6% or removal was achieved. This study distinctly utilized natural sunlight as the sole sources of irradiation which safe, inexpensive; to initiate the photocatalyst for degradation of phenol.
Understanding the formation of aerobic granules sludge (AGS) under the variations of organic loading rate (OLR) could give a different insight on AGS stability, which had become the bottleneck for practical application in sewage treatment. This study demonstrates the formation of AGS that had previously been stored for eight months at 5ºC in sequencing batch reactor (SBR) with sewage as substrate. Despite being redeveloped under variable OLR of 0.26 to 0.81 kg CODs/m3 d and low superficial air velocity (SAV) of 1.33 cm/s, the loose structure of AGS during storage can be recovered within 46 days of formation process. Variations in OLR intrude the formation process particularly during low OLR, resulting in longer period to achieve mature AGS or full granulation of biomass in reactor. The next-generation sequencing (NGS) analysis indicated that the shift in microbial community from Rhodocyclaceae to Comamonadaceae class for denitrification process was accommodated with the changes in the AGS size from 326 μm to more than 600 μm.
Intumescent coatings are an effective method for fire protection of steel structures. The search for more environmental friendly intumescent coatings has led to the utilization of palm oil clinker (POC) as a bio-filler in solvent-borne intumescent coatings in order to improve fire protection performance, mechanical strength and water resistance of steel structures. In this research, POC and hybrid fillers are mixed with an acrylic binder and then blended with flame-retardant additives in order to produce intumescent coatings. The samples were tested using Bunsen burner test, thermogravimetry analysis, surface spread of flame test, field emission scanning electron microscopy, static immersion test, and adhesion strength test. It was found that the optimum composition of POC and hybrid fillers gives the best fire protection performance with the lowest equilibrium temperature (171.3°C), high thermal stability, good water resistance and excellent mechanical properties. The results of the surface spread of flame test show that Sample A3, A4, and A6 were classified as Class 1, which is the best classification. For Sample A6 (a hybrid formulation), the addition of aluminium hydroxide gives better water resistance with the lowest rate of weight change (<0.2%), while the addition of magnesium hydroxide enhances the bonding strength of the coating up to 125% compared with Sample A1 which only has a single filler POC. It can be concluded that the optimum composition of POC and hybrid fillers results in intumescent coating with the greatest fire protection performance.