Browse publications by year: 2017

  1. Baradaran H, Ng CR, Gupta A, Noor NM, Al-Dasuqi KW, Mtui EE, et al.
    Int Angiol, 2017 Oct;36(5):445-461.
    PMID: 28541017 DOI: 10.23736/S0392-9590.17.03811-1
    BACKGROUND: The extent of calcium volume in the carotid arteries of contrast-based computer tomography (CT) is a valuable indicator of stroke risk. This study presents an automated, simple and fast calcium volume computation system. Since the high contrast agent can sometimes obscure the presence of calcium in the CT slices, it is therefore necessary to identify these slices before the corrected volume can be estimated.

    METHODS: The system typically consists of segmenting the calcium region from the CT scan into slices based on Hounsfield Unit-based threshold, and subsequently computing the summation of the calcium areas in each slice. However, when the carotid volume has intermittently higher concentration of contrast agent, a dependable approach is adapted to correct the calcium region using the neighboring slices, thereby estimating the correct volume. Furthermore, mitigation is provided following the regulatory constraints by changing the system to semi-automated criteria as a fall back solution. We evaluate the automated and semi-automated techniques using completely manual calcium volumes computed based on the manual tracings by the neuroradiologist.

    RESULTS: A total of 64 patients with calcified plaque in the internal carotid artery were analyzed. Using the above algorithm, our automated and semi-automated system yields correlation coefficients (CC) of 0.89 and 0.96 against first manual readings and 0.90 and 0.96 against second manual readings, respectively. Using the t-test, there was no significant difference between the automated and semi-automated methods against manual. The intra-observer reliability was excellent with CC 0.98.

    CONCLUSIONS: Compared to automated method, the semi-automated method for calcium volume is acceptable and closer to manual strategy for calcium volume. Further work evaluating and confirming the performance of our semi-automated protocol is now warranted.

    MeSH terms: Aged; Algorithms; Calcium/analysis*; Contrast Media/administration & dosage; Female; Humans; Male; Retrospective Studies; ROC Curve; Software; United States; Reproducibility of Results; Computed Tomography Angiography*
  2. Inoue Y, Ichie T, Kenzo T, Yoneyama A, Kumagai T, Nakashizuka T
    Tree Physiol, 2017 10 01;37(10):1301-1311.
    PMID: 28541561 DOI: 10.1093/treephys/tpx053
    Climate change exposes vegetation to unusual levels of drought, risking a decline in productivity and an increase in mortality. It still remains unclear how trees and forests respond to such unusual drought, particularly Southeast Asian tropical rain forests. To understand leaf ecophysiological responses of tropical rain forest trees to soil drying, a rainfall exclusion experiment was conducted on mature canopy trees of Dryobalanops aromatica Gaertn.f. (Dipterocarpaceae) for 4 months in an aseasonal tropical rain forest in Sarawak, Malaysia. The rainfall was intercepted by using a soft vinyl chloride sheet. We compared the three control and three treatment trees with respect to leaf water use at the top of the crown, including stomatal conductance (gsmax), photosynthesis (Amax), leaf water potential (predawn: Ψpre; midday: Ψmid), leaf water potential at turgor loss point (πtlp), osmotic potential at full turgor (π100) and a bulk modulus of elasticity (ε). Measurements were taken using tree-tower and canopy-crane systems. During the experiment, the treatment trees suffered drought stress without evidence of canopy dieback in comparison with the control trees; e.g., Ψpre and Ψmid decreased with soil drying. Minimum values of Ψmid in the treatment trees decreased during the experiment, and were lower than πtlp in the control trees. However, the treatment trees also decreased their πtlp by osmotic adjustment, and the values were lower than the minimum values of their Ψmid. In addition, the treatment trees maintained gs and Amax especially in the morning, though at midday, values decreased to half those of the control trees. Decreasing leaf water potential by osmotic adjustment to maintain gs and Amax under soil drying in treatment trees was considered to represent anisohydric behavior. These results suggest that D. aromatica may have high leaf adaptability to drought by regulating leaf water consumption and maintaining turgor pressure to improve its leaf water relations.
    MeSH terms: Borneo; Malaysia; Osmosis; Photosynthesis*; Trees/physiology*; Water/physiology*; Plant Leaves/physiology*; Dipterocarpaceae/physiology*; Droughts*; Climate Change; Rainforest
  3. Moradihamedani P, Abdullah AH
    Water Sci Technol, 2017 May;75(10):2422-2433.
    PMID: 28541950 DOI: 10.2166/wst.2017.122
    Neat cellulose acetate (CA) and CA/polysulfone (PSf) blend ultrafiltration membranes in the presence of polyvinylpyrrolidone as a pore former were prepared via a phase inversion technique. The prepared membranes were characterized by Fourier transform infrared, scanning electron microscopy, mechanical strength, water content, porosity, permeate flux and heavy metals (Pb2+, Cd2+, Zn2+ and Ni2+) rejection to comprehend the impact of polymer blend composition and additive on the properties of the modified membranes. The water flux expanded by increasing of PSf content in the polymer composition. CA/PSf (60/40) had the highest flux among prepared membranes. Prepared blend membranes were able to remove heavy metals from water in the following order: Pb2+ > Cd2+ > Zn2+ > Ni2+. The CA/PSf (80/20) blend membrane had great performance among prepared membranes due to the high heavy metals removal and permeate flux.
    MeSH terms: Cellulose; Fourier Analysis; Microscopy, Electron, Scanning; Polymers; Povidone; Sulfones; Ultrafiltration; Water; Porosity; Metals, Heavy
  4. George DS, Anthony KK, Santhirasegaram V, Saruan NM, Kaur H, Razali Z, et al.
    Water Sci Technol, 2017 May;75(10):2465-2474.
    PMID: 28541954 DOI: 10.2166/wst.2017.080
    The effect of two different water sources (treated waste water and lake water) used for irrigation on the soil geochemical properties and the fruit quality parameters of the Lohan guava were studied. The fruits' physical attributes, physicochemical attributes, nutritional attributes, mineral content as well as consumers' acceptance were evaluated. The properties of the different water sources and their effect, on both the soil and the quality of the fruits, were evaluated. Analysis of the irrigation water revealed that treated waste water was of acceptable quality with reference to irrigation water quality guidelines, while the lake water used for irrigation fell short in several aspects. The different water sources used for irrigation in the farms affected the soil geochemical properties significantly. The quality of guavas harvested from the farms that were irrigated with different water sources was significantly different. Irrigation water qualities were observed to have positive effects on the quality of the fruits and consumers' acceptance as observed from the results of quality analysis and the consumers' acceptance test.
    MeSH terms: Fruit; Minerals; Physical Examination; Soil; Water; Psidium; Lakes; Water Quality; Waste Water; Farms
  5. Ashraf Z, Rafiq M, Nadeem H, Hassan M, Afzal S, Waseem M, et al.
    PLoS One, 2017;12(5):e0178069.
    PMID: 28542395 DOI: 10.1371/journal.pone.0178069
    The present work describesthe development of highly potent mushroom tyrosinase inhibitor better than the standard kojic acid. Carvacrol derivatives 4a-f and 6a-d having substituted benzoic acid and cinnamic acidresidues were synthesized with the aim to possess potent tyrosinase inhibitory activity.The structures of the synthesized compounds were ascertained by their spectroscopic data (FTIR, 1HNMR, 13CNMR and Mass Spectroscopy).Mushroom tyrosinase inhibitory activity of synthesized compounds was determined and it was found that one of the derivative 6c possess higher activity (IC50 0.0167μM) than standard kojic acid (IC50 16.69μM). The derivatives 4c and 6b also showed good tyrosinase inhibitory activity with (IC50 16.69μM) and (IC50 16.69μM) respectively.Lineweaver-Burk and Dixon plots were used for the determination of kinetic mechanism of the compounds 4c and 6b and 6c. The kinetic analysis revealed that compounds 4c and 6b showed mixed-type inhibition while 6c is a non-competitive inhibitor having Ki values19 μM, 10 μM, and 0.05 μMrespectively. The enzyme inhibitory kinetics further showed thatcompounds 6b and 6c formed irreversible enzyme inhibitor complex while 4c bind reversibly with mushroom tyrosinase.The docking studies showed that compound 6c have maximum binding affinity against mushroom tyrosinase (PDBID: 2Y9X) with binding energy value (-7.90 kcal/mol) as compared to others.The 2-hydroxy group in compound 6c interacts with amino acid HIS85 which is present in active binding site. The wet lab results are in good agreement with the dry lab findings.Based upon our investigation we may propose that the compound 6c is promising candidate for the development of safe cosmetic agent.
    MeSH terms: Agaricales/enzymology*; Cosmetics; Enzyme Inhibitors/chemical synthesis; Enzyme Inhibitors/pharmacology*; Fungal Proteins/antagonists & inhibitors*; Kinetics; Protein Binding; Spectrum Analysis; Monophenol Monooxygenase/antagonists & inhibitors*; Molecular Structure; Monoterpenes/chemical synthesis; Monoterpenes/pharmacology*; Molecular Docking Simulation
  6. Duell EJ, Lujan-Barroso L, Sala N, Deitz McElyea S, Overvad K, Tjonneland A, et al.
    Int J Cancer, 2017 Sep 01;141(5):905-915.
    PMID: 28542740 DOI: 10.1002/ijc.30790
    Noninvasive biomarkers for early pancreatic ductal adenocarcinoma (PDAC) diagnosis and disease risk stratification are greatly needed. We conducted a nested case-control study within the Prospective Investigation into Cancer and Nutrition (EPIC) cohort to evaluate prediagnostic microRNAs (miRs) as biomarkers of subsequent PDAC risk. A panel of eight miRs (miR-10a, -10b, -21-3p, -21-5p, -30c, -106b, -155 and -212) based on previous evidence from our group was evaluated in 225 microscopically confirmed PDAC cases and 225 controls matched on center, sex, fasting status and age/date/time of blood collection. MiR levels in prediagnostic plasma samples were determined by quantitative RT-PCR. Logistic regression was used to model levels and PDAC risk, adjusting for covariates and to estimate area under the receiver operating characteristic curves (AUC). Plasma miR-10b, -21-5p, -30c and -106b levels were significantly higher in cases diagnosed within 2 years of blood collection compared to matched controls (all p-values <0.04). Based on adjusted logistic regression models, levels for six miRs (miR-10a, -10b, -21-5p, -30c, -155 and -212) overall, and for four miRs (-10a, -10b, -21-5p and -30c) at shorter follow-up time between blood collection and diagnosis (≤5 yr, ≤2 yr), were statistically significantly associated with risk. A score based on the panel showed a linear dose-response trend with risk (p-value = 0.0006). For shorter follow-up (≤5 yr), AUC for the score was 0.73, and for individual miRs ranged from 0.73 (miR-212) to 0.79 (miR-21-5p).
    MeSH terms: Adult; Aged; Female; Humans; Male; Middle Aged; Pancreatic Neoplasms/blood; Pancreatic Neoplasms/genetics*; Prospective Studies; ROC Curve; Sensitivity and Specificity; Biomarkers, Tumor/blood; Biomarkers, Tumor/genetics*; Case-Control Studies; Polymerase Chain Reaction; Area Under Curve; Carcinoma, Pancreatic Ductal/blood; Carcinoma, Pancreatic Ductal/genetics*; MicroRNAs/blood*
  7. Singh D, Narayanan S, Vicknasingam B, Corazza O, Santacroce R, Roman-Urrestarazu A
    Hum Psychopharmacol, 2017 05;32(3).
    PMID: 28544011 DOI: 10.1002/hup.2582
    OBJECTIVE: Kratom (Mitragyna speciosa. Korth) is an indigenous medicinal plant of Southeast Asia. This review paper aims to describe the trends of kratom use in Southeast Asia.

    DESIGN: A literature review search was conducted through ScienceDirect, Scopus, ProMed and Google Scholar. Twenty-five articles illustrating kratom use in humans in Southeast Asia were reviewed.

    RESULTS: Kratom has long been used by rural populations in Southeast Asia as a remedy for common ailments, to fight fatigue from hard manual work, as a drink during social interaction among men, and in village religious functions. Studies based on self-reports suggest that prolonged kratom use does not result in serious health risks or impair social functioning. Two recent trends have also emerged: (a) Kratom is reportedly being used to ease withdrawal from opioid dependence in rural settings; whereas (b) in urban areas, adulterated kratom cocktails are being consumed by younger people to induce euphoria.

    CONCLUSIONS: Legal sanctions appear to have preceded serious scientific investigations into the claimed benefits of ketum. More objective-controlled trials and experiments on humans need to be conducted to validate self-report claims by kratom users in the community.

    MeSH terms: Asia, Southeastern/epidemiology; Humans; Opioid-Related Disorders/diagnosis; Opioid-Related Disorders/drug therapy; Opioid-Related Disorders/epidemiology; Plants, Medicinal/adverse effects; Substance Withdrawal Syndrome/diagnosis; Substance Withdrawal Syndrome/drug therapy*; Substance Withdrawal Syndrome/epidemiology*; Mitragyna*; Secologanin Tryptamine Alkaloids/adverse effects*; Secologanin Tryptamine Alkaloids/therapeutic use*
  8. Yap KP, Thong KL
    Trop Med Int Health, 2017 08;22(8):918-925.
    PMID: 28544285 DOI: 10.1111/tmi.12899
    Next-generation whole-genome sequencing has revolutionised the study of infectious diseases in recent years. The availability of genome sequences and its understanding have transformed the field of molecular microbiology, epidemiology, infection treatments and vaccine developments. We review the key findings of the publicly accessible genomes of Salmonella enterica serovar Typhi since the first complete genome to the most recent release of thousands of Salmonella Typhi genomes, which remarkably shape the genomic research of S. Typhi and other pathogens. Important new insights acquired from the genome sequencing of S. Typhi, pertaining to genomic variations, evolution, population structure, antibiotic resistance, virulence, pathogenesis, disease surveillance/investigation and disease control are discussed. As the numbers of sequenced genomes are increasing at an unprecedented rate, fine variations in the gene pool of S. Typhi are captured in high resolution, allowing deeper understanding of the pathogen's evolutionary trends and its pathogenesis, paving the way to bringing us closer to eradication of typhoid through effective vaccine/treatment development.
    MeSH terms: Drug Resistance, Microbial*; Biological Evolution; Humans; Phylogeny; Salmonella typhi/genetics*; Salmonella typhi/pathogenicity; Typhoid Fever/drug therapy; Typhoid Fever/microbiology*; Typhoid Fever/prevention & control; Typhoid-Paratyphoid Vaccines*; Genome, Bacterial*
  9. Ashley SE, Tan HT, Peters R, Allen KJ, Vuillermin P, Dharmage SC, et al.
    Clin Exp Allergy, 2017 Aug;47(8):1032-1037.
    PMID: 28544327 DOI: 10.1111/cea.12942
    BACKGROUND: Food allergies pose a considerable world-wide public health burden with incidence as high as one in ten in 12-month-old infants. Few food allergy genetic risk variants have yet been identified. The Th2 immune gene IL13 is a highly plausible genetic candidate as it is central to the initiation of IgE class switching in B cells.

    OBJECTIVE: Here, we sought to investigate whether genetic polymorphisms at IL13 are associated with the development of challenge-proven IgE-mediated food allergy.

    METHOD: We genotyped nine IL13 "tag" single nucleotide polymorphisms (tag SNPs) in 367 challenge-proven food allergic cases, 199 food-sensitized tolerant cases and 156 non-food allergic controls from the HealthNuts study. 12-month-old infants were phenotyped using open oral food challenges. SNPs were tested using Cochran-Mantel-Haenszel test adjusted for ancestry strata. A replication study was conducted in an independent, co-located sample of four paediatric cohorts consisting of 203 food allergic cases and 330 non-food allergic controls. Replication sample phenotypes were defined by clinical history of reactivity, 95% PPV or challenge, and IL13 genotyping was performed.

    RESULTS: IL13 rs1295686 was associated with challenge-proven food allergy in the discovery sample (P=.003; OR=1.75; CI=1.20-2.53). This association was also detected in the replication sample (P=.03, OR=1.37, CI=1.03-1.82) and further supported by a meta-analysis (P=.0006, OR=1.50). However, we cannot rule out an association with food sensitization. Carriage of the rs1295686 variant A allele was also associated with elevated total plasma IgE.

    CONCLUSIONS AND CLINICAL RELAVANCE: We show for the first time, in two independent cohorts, that IL13 polymorphism rs1295686 (in complete linkage disequilibrium with functional variant rs20541) is associated with challenge-proven food allergy.

    MeSH terms: Alleles*; Australia; Female; Humans; Immunoglobulin E/immunology*; Infant; Male; Meta-Analysis as Topic; Linkage Disequilibrium*; Th2 Cells/immunology*; Th2 Cells/pathology; Interleukin-13/genetics*; Interleukin-13/immunology; Polymorphism, Single Nucleotide*
  10. Cheah YK, Goh KL
    J Diabetes, 2017 09;9(9):885.
    PMID: 28544482 DOI: 10.1111/1753-0407.12568
    MeSH terms: Aged; Blood Glucose*; Glucose*; Humans; Mass Screening; Exercise
  11. Yap E, Norziha ZA, Simbun A, Tumian NR, Cheong SK, Leong CF, et al.
    Leuk. Res., 2017 08;59:32-40.
    PMID: 28544907 DOI: 10.1016/j.leukres.2017.05.015
    Chronic myeloid leukemia (CML) patients who do not achieve landmark responses following treatment with imatinib mesylate (IM) are considered IM-resistant. Although IM-resistance can be due to BCR-ABL kinase domain (KD) mutations, many IM-resistant patients do not have detectable BCR-ABL KD mutations. MicroRNAs (miRNAs) are short non-coding RNAs that control gene expression. To investigate the role of miRNAs in IM-resistance, we recruited 8 chronic phase CML patients with IM-resistance who tested negative for BCR-ABL KD mutations and 2 healthy normal controls. Using miRNA sequencing, we identified 54 differentially expressed miRNAs; 43 of them downregulated. The 3 most differentially downregulated miRNAs were miR-146a-5p, miR-99b-5p and miR-151a-5p. Using real-time quantitative reverse transcriptase-polymerase chain reaction, the expression patterns of the 3 miRNAs were validated on the same cohort of 8 patients in addition to 3 other IM-resistant CML patients. In-silico analysis showed that the predicted gene targets are ATRIP, ATR, WDR48, RAD51C and FANCA genes which are involved in the Fanconi Anemia/BRCA pathway. This pathway regulates DNA damage response (DDR) and influences disease response to chemotherapy. Thus it is conceivable that DDR constitutes a key component in IM-resistance. Further research is needed to elucidate miRNA modulation of the predicted gene targets.
    MeSH terms: Imatinib Mesylate/pharmacology*; Imatinib Mesylate/therapeutic use; Adult; Computer Simulation; DNA Repair; Fanconi Anemia/metabolism*; Gene Expression Regulation; Humans; Middle Aged; Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy*; Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics; Down-Regulation; Case-Control Studies; Fusion Proteins, bcr-abl/genetics; Drug Resistance, Neoplasm; BRCA1 Protein; MicroRNAs/genetics*
  12. Mizuno H, Fukuda S, Fukumura A, Nakamura YK, Jianping C, Cho CK, et al.
    J Radiat Res, 2017 May 01;58(3):372-377.
    PMID: 27864507 DOI: 10.1093/jrr/rrw108
    A dose audit of 16 facilities in 11 countries has been performed within the framework of the Forum for Nuclear Cooperation in Asia (FNCA) quality assurance program. The quality of radiation dosimetry varies because of the large variation in radiation therapy among the participating countries. One of the most important aspects of international multicentre clinical trials is uniformity of absolute dose between centres. The National Institute of Radiological Sciences (NIRS) in Japan has conducted a dose audit of participating countries since 2006 by using radiophotoluminescent glass dosimeters (RGDs). RGDs have been successfully applied to a domestic postal dose audit in Japan. The authors used the same audit system to perform a dose audit of the FNCA countries. The average and standard deviation of the relative deviation between the measured and intended dose among 46 beams was 0.4% and 1.5% (k = 1), respectively. This is an excellent level of uniformity for the multicountry data. However, of the 46 beams measured, a single beam exceeded the permitted tolerance level of ±5%. We investigated the cause for this and solved the problem. This event highlights the importance of external audits in radiation therapy.
    MeSH terms: Asia; Clinical Trials as Topic*; Dose-Response Relationship, Radiation*; Humans; Surveys and Questionnaires; Radiometry*; Multicenter Studies as Topic*; Clinical Audit*
  13. TermehYousefi A, Azhari S, Khajeh A, Hamidon MN, Tanaka H
    Mater Sci Eng C Mater Biol Appl, 2017 Aug 01;77:1098-1103.
    PMID: 28531983 DOI: 10.1016/j.msec.2017.04.040
    Haptic sensors are essential devices that facilitate human-like sensing systems such as implantable medical devices and humanoid robots. The availability of conducting thin films with haptic properties could lead to the development of tactile sensing systems that stretch reversibly, sense pressure (not just touch), and integrate with collapsible. In this study, a nanocomposite based hemispherical artificial fingertip fabricated to enhance the tactile sensing systems of humanoid robots. To validate the hypothesis, proposed method was used in the robot-like finger system to classify the ripe and unripe tomato by recording the metabolic growth of the tomato as a function of resistivity change during a controlled indention force. Prior to fabrication, a finite element modeling (FEM) was investigated for tomato to obtain the stress distribution and failure point of tomato by applying different external loads. Then, the extracted computational analysis information was utilized to design and fabricate nanocomposite based artificial fingertip to examine the maturity analysis of tomato. The obtained results demonstrate that the fabricated conformable and scalable artificial fingertip shows different electrical property for ripe and unripe tomato. The artificial fingertip is compatible with the development of brain-like systems for artificial skin by obtaining periodic response during an applied load.
    MeSH terms: Fingers; Humans; Pressure; Touch*; Skin, Artificial; Mechanical Phenomena
  14. Asri RIM, Harun WSW, Samykano M, Lah NAC, Ghani SAC, Tarlochan F, et al.
    Mater Sci Eng C Mater Biol Appl, 2017 Aug 01;77:1261-1274.
    PMID: 28532004 DOI: 10.1016/j.msec.2017.04.102
    Corrosion prevention in biomaterials has become crucial particularly to overcome inflammation and allergic reactions caused by the biomaterials' implants towards the human body. When these metal implants contacted with fluidic environments such as bloodstream and tissue of the body, most of them became mutually highly antagonistic and subsequently promotes corrosion. Biocompatible implants are typically made up of metallic, ceramic, composite and polymers. The present paper specifically focuses on biocompatible metals which favorably used as implants such as 316L stainless steel, cobalt-chromium-molybdenum, pure titanium and titanium-based alloys. This article also takes a close look at the effect of corrosion towards the implant and human body and the mechanism to improve it. Due to this corrosion delinquent, several surface modification techniques have been used to improve the corrosion behavior of biocompatible metals such as deposition of the coating, development of passivation oxide layer and ion beam surface modification. Apart from that, surface texturing methods such as plasma spraying, chemical etching, blasting, electropolishing, and laser treatment which used to improve corrosion behavior are also discussed in detail. Introduction of surface modifications to biocompatible metals is considered as a "best solution" so far to enhanced corrosion resistance performance; besides achieving superior biocompatibility and promoting osseointegration of biocompatible metals and alloys.
    MeSH terms: Alloys; Biocompatible Materials*; Corrosion; Humans; Metals; Stainless Steel; Surface Properties; Titanium; Prostheses and Implants
  15. Hussain Z, Thu HE, Amjad MW, Hussain F, Ahmed TA, Khan S
    Mater Sci Eng C Mater Biol Appl, 2017 Aug 01;77:1316-1326.
    PMID: 28532009 DOI: 10.1016/j.msec.2017.03.226
    Curcumin derivatives have been well-documented due to their natural antioxidant, antimicrobial and anti-inflammatory activities. Curcuminoids have also gained widespread recognition due to their wide range of other activities which include anti-infective, anti-mutagenic, anticancer, anti-coagulant, antiarthrititc, and wound healing potential. Despite of having a wide range of activities, the inherent physicochemical characteristics (poor water solubility, low bioavailability, chemical instability, photodegradation, rapid metabolism and short half-life) of curcumin derivatives limit their pharmaceutical significance. Aiming to overcome these pharmaceutical issues and improving therapeutic efficacy of curcuminoids, newer strategies have been attempted in recent years. These advanced techniques include polymeric nanoparticles, nanocomposite hydrogels, nanovesicles, nanofibers, nanohybrid scaffolds, nanoconjugates, nanostructured lipid carriers (NLCs), nanoemulsion, polymeric micelles and polymeric blend films. Incorporation of curcumin in these delivery systems has shown improved solubility, transmembrane permeability, long-term stability, improved bioavailability, longer plasma half-life, target-specific delivery, and upgraded therapeutic efficacy. In this review, a range of in vitro and in vivo studies have been critically discussed to explore the pharmaceutical significance and therapeutic viability of the advanced delivery systems to improve antioxidant, anti-inflammatory and antimicrobial efficacies of curcumin and its derivatives.
    MeSH terms: Anti-Infective Agents; Anti-Inflammatory Agents; Antioxidants; Curcumin/pharmacology*; Micelles
  16. Abidin MNZ, Goh PS, Ismail AF, Othman MHD, Hasbullah H, Said N, et al.
    Mater Sci Eng C Mater Biol Appl, 2017 Aug 01;77:572-582.
    PMID: 28532067 DOI: 10.1016/j.msec.2017.03.273
    A novel approach in the design of a safe, high performance hemodialysis membrane is of great demand. Despite many advantages, the employment of prodigious nanomaterials in hemodialysis membrane is often restricted by their potential threat to health. Hence, this work focusses on designing a biocompatible polyethersulfone (PES) hemodialysis membrane embedded with poly (citric acid)-grafted-multi walled carbon nanotubes (PCA-g-MWCNTs). Two important elements which could assure the safety of the nanocomposite membrane, i.e. (i) dispersion stability and (ii) leaching of MWCNTs were observed. The results showed the improved dispersion stability of MWCNTs in water and organic solvent due to the enriched ratio of oxygen-rich groups which subsequently enhanced membrane separation features. It was revealed that only 0.17% of MWCNTs was leached out during the membrane fabrication process (phase inversion) while no leaching was detected during permeation. In terms of biocompatibility, PES/PCA-g-MWCNT nanocomposite membrane exhibited lesser C3 and C5 activation (189.13 and 5.29ng/mL) and proteins adsorption (bovine serum albumin=4.5μg/cm2, fibrinogen=15.95μg/cm2) as compared to the neat PES membrane, while keeping a normal blood coagulation time. Hence, the PES/PCA-g-MWCNT nanocomposite membrane is proven to have the prospect of becoming a safe and high performance hemodialysis membrane.
    MeSH terms: Renal Dialysis; Polymers; Sulfones; Nanotubes, Carbon*
  17. Masni-Azian, Tanaka M
    Comput Methods Biomech Biomed Engin, 2017 Aug;20(10):1066-1076.
    PMID: 28532164 DOI: 10.1080/10255842.2017.1331345
    In the biomechanics field, material parameters calibration is significant for finite element (FE) model to ensure a legit estimation of biomechanical response. Determining an appropriate combination of calibration factors is challenging as each constitutive component responds differently. This study proposes a statistical factorial analysis approach using L16(4(5)) orthogonal array to evaluate material nonlinearity and applicable calibration factor of the intervertebral disc FE model in pure moment. The calibrated model exhibits improved agreement to the experimental findings for all directions. Appropriate combination of calibration parameter reduces the estimation gap to the experimental findings, ensuring agreeable biomechanical responses.
    MeSH terms: Biomechanical Phenomena; Calibration; Factor Analysis, Statistical*; Humans; Intervertebral Disc/physiology*; Models, Theoretical; Range of Motion, Articular/physiology; Nonlinear Dynamics*; Finite Element Analysis*
  18. Naes SM, Basri O, Ismail F, Ata'Allah GA, Idris SK, Mat Adenan NA, et al.
    Reprod Biol, 2017 Sep;17(3):199-209.
    PMID: 28532595 DOI: 10.1016/j.repbio.2017.05.002
    There is a paucity of studies on effect of iron in embryo culture procedures. This study aims to ascertain the optimal, tolerance and toxic levels of iron in a protein-free embryo culture medium (PFM) to determine the effect of iron on embryonic development. The application of PFM in assisted reproductive technologies (ART) is intended to eliminate disease transmission and improve ART treatment outcome. The optimal, tolerance and toxic levels of iron on human spermatozoa and mouse embryos were determined by challenging them with different levels of iron (ferric iron; Fe(+3)). Human normozoospermic semen samples (n=24) and days 1-4 Quakenbush Special (Qs) mouse embryos (n=1160) were incubated in PFM supplemented with different concentrations of Fe(+3) over different periods of time. 2.0μg/mL (35.8μM) of Fe(+3) was the optimal level of Fe(+3) for human spermatozoa with a tolerance range of 0.5-2μg/mL; whereas a level of 0.11μg/mL (2μM) of Fe(+3) was the optimum for day 2 embryos. Levels of ferric iron at 0.11 to 2.8μg/mL appear to enhance spermatozoa motility, preserve its DNA integrity and possibly increase percentage of blastocysts developed but levels of ferric iron >16μg/mL is hazardous for both spermatozoa and embryos. In spite of beneficial effects of iron it is premature to recommend its supplementation in embryo culture media because of the known deleterious nature of iron and the paucity of toxicological data. Toxicological studies must be performed following which it can be decided whether it is safe to consider iron as a supplement in human embryo and spermatozoa culture media.
  19. Landoni G, Lomivorotov V, Pisano A, Nigro Neto C, Benedetto U, Biondi Zoccai G, et al.
    Contemp Clin Trials, 2017 08;59:38-43.
    PMID: 28533194 DOI: 10.1016/j.cct.2017.05.011
    OBJECTIVE: There is initial evidence that the use of volatile anesthetics can reduce the postoperative release of cardiac troponin I, the need for inotropic support, and the number of patients requiring prolonged hospitalization following coronary artery bypass graft (CABG) surgery. Nevertheless, small randomized controlled trials have failed to demonstrate a survival advantage. Thus, whether volatile anesthetics improve the postoperative outcome of cardiac surgical patients remains uncertain. An adequately powered randomized controlled trial appears desirable.

    DESIGN: Single blinded, international, multicenter randomized controlled trial with 1:1 allocation ratio.

    SETTING: Tertiary and University hospitals.

    INTERVENTIONS: Patients (n=10,600) undergoing coronary artery bypass graft will be randomized to receive either volatile anesthetic as part of the anesthetic plan, or total intravenous anesthesia.

    MEASUREMENTS AND MAIN RESULTS: The primary end point of the study will be one-year mortality (any cause). Secondary endpoints will be 30-day mortality; 30-day death or non-fatal myocardial infarction (composite endpoint); cardiac mortality at 30day and at one year; incidence of hospital re-admission during the one year follow-up period and duration of intensive care unit, and hospital stay. The sample size is based on the hypothesis that volatile anesthetics will reduce 1-year unadjusted mortality from 3% to 2%, using a two-sided alpha error of 0.05, and a power of 0.9.

    CONCLUSIONS: The trial will determine whether the simple intervention of adding a volatile anesthetic, an intervention that can be implemented by all anesthesiologists, can improve one-year survival in patients undergoing coronary artery bypass graft surgery.

    MeSH terms: Adult; Coronary Artery Disease/mortality; Coronary Artery Disease/surgery*; Female; Humans; Male; Outcome and Process Assessment (Health Care); Volatilization; Survival Analysis
  20. Faradianna Lokman E, Muhammad H, Awang N, Hasyima Omar M, Mansor F, Saparuddin F
    Int J Biomed Sci, 2017 Mar;13(1):26-34.
    PMID: 28533734
    Dioscorea hispida (D.hispida) is the most well-known starchy tuber in Malaysia and called 'ubi gadong'. Despite concerns over toxicity effects, the tuber is known to possess therapeutic values due to the presence of bioactive compounds such as saponins. This study was performed to identify the changes in gene expression profiles associated with hepatoxicity in pregnant rat treated with D.hispida using RT² Profiler PCR Array. The identification of steroidal saponins from D.hispida was carried out by UHPLC/MS method. Treatment of D.hispida caused mortality when dosage above 2000 mg/kg b.w. was given to pregnant rats. The PCR array showed that several genes were significantly up and down-regulated upon treatment with D.hispida. Treatment of D.hispida at 2000 mg/kg b.w leads to significant upregulation of several genes such as Btg2, Gsr, L2hgdn, S100a8, Slc17a3, Bhmt, Cd68, Cyp1a2 whereas several genes were downregulated such as Abcb1a, Aldoa, Cdc14b, Icam1, Krt18, Hpn and Maob. The consumption of D.hispida extract when taken at lower dosage of 2000 mg/kg may not be harmful to rats. D.hispida extract given at the highest dosage to pregnant rats caused alterations of several genes categorized in different hepatotoxic group functions such as necrosis, cholestasis and phospholipodisis.
External Links