Introduction: Oral squamous cell carcinoma (OSCC) is a major health problem worldwide. The overall survival rate remains at 50% despite numerous studies and various treatment modalities in OSCC. The presence of lymph node metastasis in OSCC is well established as an independent prognostic factor. This present study aims to investigate the association of four tumour antigens; FJX-1, GNα12, IFITM3 and MAGED4B with the sociodemographic and clinicopathological parameters of OSCC. The potential use of these markers as a prognostic indicator of patient sur-vival and lymph node metastasis in OSCC was explored. Methods: 35 cases of OSCC with available formalin-fixed paraffin-embedded (FFPE) specimens involving the tongue, buccal mucosa, gingiva, alveolus and floor of mouth were evaluated by immunohistochemistry for FJX-1, GNA12, IFITM3 and MAGED4B expression. Assessment of the expression of these tumour antigens was based on the cellular sub-site, intensity and percentage of staining in the OSCC samples. Results: The expression of all four tumour markers were expressed in all samples (n=35) but none statistically associated with any clinicopathological or socio-demographic parameters. Survival analysis using Kaplan-Meier test showed high expression of GNA12, IFITM3 and MAGED4B individually with poor prognosis in OSCC patients. A combination of markers, GNA12 and MAGED4B demonstrated a significant association with pa-tient survival in OSCC (p=0.014). Multivariate analysis after adjustment for selected socio-demographic factors (age, gender, risk habits and sub-sites of the oral cavity) revealed that high expression of both MAGED4B and GNA12 remained as an independent prognostic factor for poor prognosis in OSCC (HRR =5.231, 95% CI 1.601,17.084; p=0.006). Conclusion: We concluded that high combined expression of both marker (Gα12 and mAGED4B) might be used as an independent prognostic indicator in OSCC.
Introduction: Human leukocyte antigens (HLA) are a group of unique transmembrane glycoproteins that are ex-pressed on the surface of virtually all types of cells within the human body. These molecules are encoded by a set of highly polymorphic gene sequences known also as the major histocompatibility complex (MHC) and play an essential role in the presentation of antigenic peptides to immune cells for recognition and response. In recent years, various HLA alleles have been found to be associated with different autoimmune and inflammatory diseases such as rheumatoid arthritis, systemic lupus erythematosus (SLE) and allergic rhinitis. Identification of these alleles via HLA typing is necessary for initial screening and diagnosis purposes. Besides that, HLA typing is also used to determine compatibility matching between a donor and a recipient for tissue/organ transplantations in order to prevent graft rejection. Therefore, good quality and quantity of genomic DNA is required. In most scenarios, peripheral blood is chosen as the most reliable source of DNA for analysis, however this approach is seen as invasive and may cause pain and anxiety among the patients, particularly young children and weak subjects. Hence, derivation of genomic DNA from buccal cells as an alternative source material is becoming increasingly popular, especially in PCR-based genetic assays. Some of the most commonly described methods to collect buccal cells include using oral swabs, cytological brushes, mouthwashes and treated cards. Each technique yields varying quantities of DNA with diverse purity levels. In this study, we aim to evaluate the amount and purity of genomic DNA extracted from buccal swabs and brushes as well as blood for screening of selected HLA class II alleles. Methods: Cheek cell samples were col-lected using sterile foam tipped buccal swabs (Whatman) and buccal collection brushes (Gentra Puregene) whereas peripheral blood samples were withdrawn following routine venipuncture techniques. All samples were subjected to DNA extraction according to modified commercial kit protocols. Screening of selected HLA-DRB1 alleles was con-ducted via PCR with sequence-specific primers as established by Bunce et al. 1995. Results: There was no significant difference (p > 0.05) in the total DNA yield obtained from blood and buccal swab samples, which were 17.57μg (± 8.66) and 13.28μg (± 4.81), respectively. All samples exhibited similar 260/280 ratios of about ~1.80 (p > 0.05). However, buccal brush samples contributed the least amount of DNA (0.29μg, ± 0.12) compared to other sources (p < 0.05). The pure genomic DNA isolated from both blood and buccal swab samples were successfully typed for low resolution HLA-DRB1 alleles. Conclusion: Buccal swabs provide good quantity and quality of DNA for screening of HLA alleles with high accuracy and thus can be utilized as a non-invasive substitute for venipuncture.
Introduction: Laryngectomy patients undergo voice rehabilitation that requires implantation of trachea-oesophagal speech valves (TESV). Usually, laryngeal cancer patients require insertion of these devices post-operatively to im-prove their quality of life. Implantation of TESV dates back to 1979 by pioneering work of Blom and Singer. There are cases of aspiration of TESV wearer reported, and obstruction of the TESV causes leakage through the valve and is suggested as a main reason for replacement of the device. The dysfunctional failure may be caused by microbial colonization on the valve or physical malfunction and requires immediate replacement is desirable. The aim of this study is to identify the microbial community members of selected TESVs using both culture-independent techniques (Next-generation sequencing) to analyse the microbiota, including unculturable species, and routine microbiology techniques (culture-dependent method) and to obtain representative isolates that can form the basis for experiments to enable increased understanding of the community. Methods: Biofilms were harvested from 16 explanted speech valves from patients visiting the ENT clinic in Freeman Hospital, Newcastle, UK. Routine microbiology techniques (culture-dependent method) including ChromeID® plates and Matrix-Assisted Laser Desorption/Ionization Time of Flight (MALDI-TOF) Mass Spectrometry were used for identification of TESV microbiome. Sequencing of the samples was performed at MR DNA (www.mrdnalab.com, USA) on a MiSeq following the manufacturer’s guidelines in order to determine the bacteria and candida composition in the biofilm community. Results: The most frequently isolated fungal species was C. albicans, which was cultured from 11 out of 16 TESVs (79%), followed by five TESVs with C. tropicalis (36%), three TESVs had C. glabrata (21%) and only one TESV contained S. cerevisiae (7%). Interestingly no biofilm communities contained more than two fungal species and 2 TESVs (12%) possessed only bacterial species. There were only 16 species of bacteria cultured and identified by MALDI-TOF MS. This was far lower than the 91 species that were detected by NGS. Species from the genus Lactobacillus were found in 10 of 16 TESVs (63%), the highest frequency of any bacterial genus isolated from TESVs followed by S. aureus found in eight TESVs of 16. S. epidermidis was identified in two TESVs (13%), Streptococcus spp., K. oxytoca and O. anthropi were both identified in five different TESVs, while the gut bacterium E. faecium was found in four TESVs. Only one TESV contained E. coli. Conclusion: TESV biofilm composition was dominated by Candida spp. and occasionally contained other types of eukaryote such as Saccharomycetes. It was not uncommon for more than one Candida species to be present. The biofilms also harboured a mixture of bacteria, with lactic acid producers (Lactobacillus sp. and Streptococcus sp.) normally accompanying Candida sp. in the biofilm.
Introduction: Protein and gene expressions are intensively profiled for potential biomarkers in diagnosis or prognosis of diseases. The correlation between corresponding protein and mRNA of a gene is important to establish whether transcript levels of a given gene can be used as proxies for the corresponding protein levels. mRNA profiling is more commonly utilised as this method is cheaper and the technology more advanced. Acute myeloid leukaemia (AML) is a heterogeneous group of malignant precursors of the myeloid lineage that leads to death if not treated. Cytokines and death receptors are commonly evaluated in this disease in search of potential biomarkers; however, the mRNA/protein correlations of these biomarkers are still unclear. Methods: Semi-quantitative expression of mRNA expression and protein levels of IL-1β, IL-18Rα, IL-6, TNF-α and DR5 were measured by conventional polymerase reaction (PCR) and flow cytometry in 11 cases of AML at diagnosis. Correlation in the intensity of the PCR amplicon and corre-sponding mean fluorescence intensity of protein was determined by Spearman’s rank correlation test. Results: None of the cytokines/death receptor was significantly correlated except IL-6 (Rs= -0.6287, p=0.038). Unexpectedly, this was also a significant negative correlation. Conclusion: For the majority of selected biomarkers in AML, whether secreted or surface-expressed, mRNA and protein expressions were not significantly correlated. The strong negative correlation for IL-6 is worth further investigation.
Introduction:Spilanthes acmella, also known as “subang nenek’, has been used traditionally in Malaysia to treat toothache. A previous study has shown Spilanthes acmella leaves extracts (SALE) inhibit Streptococcus mutans growth. Streptococcus mutans is commonly found in the human oral cavity and is the main contributor to tooth de-cay. There is no study on the antibacterial effects of Spilanthes acmella flower extracts (SAFE) against Streptococcus mutans reported to date. Therefore, the objective of this study is to investigate antibacterial properties of SAFE against S. mutans. Methods:S. mutans was subcultured in Muller Hinton (MH) broth and agar. Sequential extractions of S. acmella flowers were conducted using four different solvents with increasing polarity, [n- hexane, dichloromethane (DCM), acetone, methanol (MeoH)] and tested with different concentrations against S. mutans via the disc diffusion assay, minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC). Sodium fluoride (NaF) was used as a positive control while DMSO was used as a negative control. Results: The disc diffusion assay shows SAFE inhibited Streptococcus mutans growth. SAFE-DCM shows the greatest inhibition properties (12.33±2.30 mm) followed by SAFE-n-hexane (11.33±0.57 mm). Meanwhile, SAFE-Meoh and SAFE-acetone show no inhibition zone (6.00±0.001 mm). MIC value for SAFE-DCM and SAFE-n-hexane is 12.5 mg/mL respectively. Whereas, MBC value SAFE-DCM and SAFE-n-hexane is 50.0 mg/mL respectively. Conclusion: It can be concluded SAFE-DCM and SAFE-n-hexane possesses bactericidal properties against Streptococcus mutans.
Introduction:Candida spp. are most common opportunistic pathogenic yeast that inhabit human oral cavity, epider-mis, gastrointestinal tract, and vagina leading to candidiasis. The transition of this yeast from commensal to potent pathogen is facilitated by numbers of virulence factors including biofilm formation. While most reports on candidi-asis are associated with formation Candida albicans biofilms, however, non-albicans Candida species prevalence is of growing concern. Recently, the use of probiotics as antifungal and antibiofilm has gained an increasing attention. As such, we aim to evaluate the inhibitory effect of monomicrobial and polymicrobial of Streptococcus salivariuson six strains of NAC namely Candida dubliniensis, Candida glabrata, Candida krusei, Candida lusitanaei, Candida parapsilosis and Candida tropicalis. Methods: Antifungal activity of S. salivarius on NAC species was performed using well diffusion method on Mueller Hinton Agar (MHA) and the diameter of inhibition zone were assessed. For formation of monomicrobial biofilm, standardized cell suspensions of NAC species (1 x 105 cells/ml) and probiotic Streptococcus salivarius (1 x 106 cells/ml) were grown in RPMI or nutrient broth media at 37°C for 72 h. Meanwhile to study polymicrobial biofilm of both NAC and S. salivarius, similar protocol was employed by inoculating both microorganisms with a similar cell density as in monomicrobial. Finally, biofilm formation was assessed through quantification of total biomass by crystal violet (CV) assay and the absorbance of adherent biofilm was measured in triplicate at 620nm. Results: Antifungal susceptibility testing of S. salivarius on all six NAC species discerned no zone of inhibition. Furthermore, our results showed variability of monomicrobial and polymicrobial biofilm biomass between NAC species and growth medium. All six polymicrobial NB-grown and RPMI-grown exhibited decreased of the biofilm formation. C. parapsilosis co-cultured with S. salivarius in NB medium had shown lowest biofilm bio-mass by 75.51+_1.34% while in RPMI medium, C. lusitanaei demonstrated with most reduced biofilm biomass by 67.03+_5.19. Conclusion: Our study elucidated the antagonistic relationship between Streptococcus salivarius and non-albicans Candida by supressing the growth of polymicrobial biofilm and pseudohyphae/hyphae of NAC species.
Introduction: Silver nanoparticles has been proven to be an effective agent for antimicrobial efficacy against bacte-ria, viruses and other eukaryotic microorganisms. Green synthesis is one of the methods that has been developed to synthesize silver nanoparticles in environmentally-friendly conditions. It uses plant extracts as reducing and capping agents. Besides act as reducing and capping agents, bioactives such as phenolic compounds may bind to silver nanoparticles and enhance its medicinal properties. Strobilanthes crispus is a Malaysian native plant. Previous stud-ies had shown that S. crispus contains polyphenols, catechins, alkaloids, caffeine, tannins and vitamins. Therefore, the aim of this study is to determine antibacterial activities of silver nanoparticles-Strobilanthes crispus (AgNP-SC) against clinically important pathogens such as Escherichia coli, Pseudomonas aeruginosa and Streptococcus mutans. Methods: The disc diffusion assay (DDA) was performed to investigate the inhibition zone of AgNps-Sc towards E. coli, P. aeruginosa and S. mutans. Minimum inhibition concentration (MIC) and minimum bactericidal concentration (MBC) was used to determine bactericidal/bacteriostatic profile of AgNP- SC against E. coli, P. aeruginosa and S. mu-tans. Results: AgNP-SC (40mg/mL) shows the greatest inhibition properties (12.67±0.6mm) against S. mutans when compared to Strobilanthes crispus leaves extract (6.0±0.001mm) and blank silver nanoparticles (6.0±0.001mm). MIC values for AgNP-SC against S. mutans and E. coli were at 0.625 mg/mL and 1.25 mg/mL, respectively. Whereas the MIC value of AgNP- SC against P. aeruginosa was at 2.5 mg/mL. MBC values of AgNP-SC against E. coli, P. aerugino-sa and S. mutans were at 1.25, 2.5 mg/mL respectively. Results are concentration-dependent, with higher concentra-tion demonstrating better inhibition property. Conclusion: It can be concluded that AgNP-SC possesses bactericidal properties against S. mutans, E. coli and P. aeruginosa.
Introduction:Candida albicans is an opportunistic fungus that is associated with oral carcinogenesis. In addition, biofilm formation has been one of the important virulence factors of the yeast. Streptococcus salivarius K12 is an oral probiotic while Musa acuminata is a well-known prebiotic. The objective of this study is to investigate the effect of S. salivarius K12 and M. acuminata skin aqueous extract (synbiotic) on C. albicans with the hypothesis that S. salivariusK12 and M. acuminata inhibit C. albicans biofilm formation. Methods: To develop mono-species biofilm, C. albicans(ATCC MYA-4901 and cancer isolates, ALC2 and ALC3 strains) and S. salivarius K12 were standardised to 105 cells and 106 cells, respectively and grown in 96-well plate in nutrient broth (NB) or RPMI at 37 °C for 72 h. Polymicro-bial biofilms were developed by inoculating both microorganisms in the same well with similar cell number as in mono-species. To determine the effect of synbiotic, similar protocol was repeated by mixing with 800 mg mL-1 of M. acuminata skin extract and incubated at 37 °C for 72 h. The medium was replenished at every 24 h, aseptically. Finally, the biofilms were assessed using crystal violet assay and the optical density was measured at OD620nm. Results:C. albicans strain MYA-4901 and ALC3, when grown in polymicrobial with S. salivarius K12 in NB that is predominated by yeast-form C. albicans, exhibited decreased biofilms by 71.40±11.7% and 49.40±3.9%, respec-tively when compared to the expected biofilms. Meanwhile in RPMI, which C. albicans strain ATCC MYA-4901, ALC2 and ALC3 were predominated by hyphal-form showed decreased biofilms by 72.0±26.7%, 53.4±14.4% and 65.7±6.7%, respectively when compared to the expected biofilms. Conclusion:S. salivarius K12 and M. acuminata skin extract synbiotic inhibit biofilm formation of C. albicans yeast and hyphal forms thus supported the hypothesis of the present study.
Introduction:Alternative treatment for cancer from herbal medicine has gained interest due to its benefits on im-mune modulation, improving the survival and quality of life. Mitragyna speciosa (M. speciosa) or Kratom is an indig-enous plant that can be found in Thailand and northern part of Peninsular Malaysia has becomes popular in recent years due to its ability to exhibit the opioid-like effects of analgesia. Mitragynine is the main alkaloid in M. speciosa which is found to reduce gastrointestinal motility and has been used by local communities as traditional treatment for diarrhoea and many other diseases. However, there is lack of scientific evidence to show that M. speciosa has anti-oxidative and anti-cancer properties especially in colorectal cancer. Therefore, our study aims to evaluate the anti-oxidative properties of M. Speciosa methanolic extract (MSME) and its effects on colorectal cancer cell line, SW480. Methods: The anti-oxidant content and scavenging activity of MSME were determined by total phenolic content (TPC) assay and total flavonoid content (TFC) assay as well as 2,2’-azino-bis (3-ethylbenzothiazoline-6-sul-phonic acid) (ABTS) assay and 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay respectively. Cytotoxicity and cytokine inhibitory effects of MSME on SW480 cells were determined by (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxy-phenyl)-2-(4-sulfophenyl)-2H-tetrazolium) (MTS) and cytokine beads array (CBA), respectively. Results: The TPC of MSME (0.1mg/ml = 85.85 ± 8.25 mg GAE/g extract; 1mg/ml = 167.43 ± 13.50 mg GAE/g extract; 10mg/ml = 408.94 ±7.17 mg GAE/g extract) was lower than pterostilbene, the positive control drug (76.37 ± 2.75; 230.52 ± 10.92; 835.44 ± 6.84 mg GAE/g extract). Conversely, the TFC of MSME (0.1mg/ml = 32.17 ± 27.92 mg QE/g extract; 1mg/ml = 347.72 ± 15.97 mg QE /g extract; 10mg/ml = 739.81 ± 5.56 mg QE /g extract) was slightly higher than pteros-tilbene (ND; 212.73 ± 17.92; 700.50 ± 3.47 mg QE/g extract). In DPPH assay, MSME showed comparatively similar antioxidant scavenging activity (IC50=4.34μg/ml) with pterostilbene (IC50=4.393μg/ml). However, MSME showed lower anti-oxidant scavenging activity (IC50=4.26μg/ml) than pterostilbene (IC50=1.556μg/ml) as measured by ABTS assay. In cytotoxicity assay, IC50 of MSME on SW480 cells was determined to be at 1.486 mg/ml. Overexpression of cytokines such as IL-6, IL-8 (CXCR8) and IL-10 could potentially promote tumour cell proliferation, growth and metastasis. Increased production of these cytokines through LPS stimulation in SW480 was slightly reduced by treat-ment with MSME. Conclusion: MSME could have a potential bioactive compound that possesses anti-oxidative and anti-cancer properties that would be beneficial as an alternative treatment of colorectal cancer.
Introduction:Staphylococcus aureus is a Gram-positive staphylococci that form biofilms. Bacteria that dwell in bio-films tend to be highly resistant towards the action of antibiotics. S. aureus is a main cause of infections in the oral cavity such as angular cheilitis, endodontic infections, osteomyelitis of the jaw, parotitis and oral mucositis. Previous studies reported that S. aureus also spread to the other parts of the body through the circulatory system, which may lead to chronic infections. Hence the search for new antibacterial agents remains high and needs urgent attention to treat this problem. Plants offer a rich source of antimicrobial agents and bioactive compounds. In this study, aque-ous oil palm leaf extracts (OPLE) has been used as an alternative antibacterial agent against oral infections mainly caused by Staphylococcus aureus. Many studies report the potential use of oil palm leaf extracts in treating bacterial infections such as Escherichia coli, Salmonella sp., Staphylococcus aureus (isolated from other part of the body), Pseudomonas aeruginosa and Bacillus sp. Although previous studies have documented the antimicrobial properties of oil palm leaf extracts, to date no study has been reported on the effect of oil palm leaf extract on oral microbes. Methods: The agar diffusion method, minimum inhibitory concentration (MIC) and minimal bactericidal concen-tration (MBC) assay were conducted in order to observe the antibacterial activity of aqueous oil palm leaf extract. The crystal violet assay was used to determine the anti-biofilm activity of the extracts. Chlorhexidine and deionised distilled water were used as the positive and negative control respectively. For agar diffusion method, the diameter of inhibition zone was measured. Results: The inhibition zone of the tested bacteria was observed between 0-20mm. The MIC and MBC assay were used to know the lowest concentrations of the extract that inhibit the growth and killed the tested bacteria respectively. The MIC and MBC values for the tested bacteria were observed between 0-7.813mg/mL. While for anti-biofilm assays, OPLE aqueous extract acts as a potent anti-biofilm agent with dual actions, pre-venting and eradicating the biofilm of the tested bacteria. Conclusion: In conclusion, the tested plant extracts could serve as alternative natural antibacterial and anti-biofilm agent against oral infections.
Introduction: Oral cancer is the sixth most common malignancy in the world. It is a major concern in Southeast Asia primarily due to betel quid chewing, smoking, and alcohol consumption. In Malaysia, oral cancer related cases accounts for 1.55% of the cause of deaths. Despite recent advances in cancer diagnoses and therapies, the survival rate of oral cancer patients only reached 50% in the last few decades. Tissue engineering (TE) principles may pro-vide new technology platforms to study mechanisms of angiogenesis and tumour cell growth as well as potentially tumour cell spreading in cancer research. The use of biomaterial, appropriate cell source and proper signalling mol-ecules are vital components of TE. Collagen biomaterial are widely used scaffold or membrane in oral application. Nevertheless, no review has been performed on the its usage for the study of oral cancer. This study aimed to sys-tematically review the use of collagen scaffold in oral cancer application. Methods: Research articles were searched using Scopus, Pubmed and Web of Science (WOS) databases. The keywords were limited to “collagen membrane OR collagen scaffold” AND “oral cancer”. Results: Initial search yielded 61 papers (Scopus:37, Pubmed: 12, WOS: 12). Further scrutinization of the papers based on the inclusion criteria resulted total of 3 papers. Two of the papers used collagen membrane for regeneration of oral mucosal defect and increment of alveolar ridge height post-surgery. The remaining paper utilize collagen biomaterial as scaffold for the culture of adenoid cystic carcinoma (ACC) cells. All papers reported significant role of collagen biomaterial in terms of tissue formation, healing scaffold and cellular proliferation. Conclusion: Collagen utilization as biomaterial offers potential use for regeneration of oral related structures as well providing useful model for therapeutics anti-cancer research.
Introduction: While sharing a common causal link, both rheumatoid arthritis (RA) and periodontitis (PD) manifest similar inflammatory responses. With the progression of severity, both diseases result in bone loss. Hence, Ca and Zn, as structural components of the bones, are expected to be altered in saliva and serum in PD and RA respectively. Zinc and calcium concentrations have been studied previously in patients with PD or RA, with PD patients exhibiting increased salivary Ca and decreased Zn concentrations in serum, while RA patients have been reported to express low plasma concentrations of both Zn and Ca. The aim of this study is to evaluate the saliva and serum levels of Ca and Zn in PD patients with or without RA. Methods: Serum and saliva samples were collected from 82 patients from the Faculty of Dentistry, University of Malaya and the University Malaya Medical Centre rheumatoid clinic. Patients were grouped according to their periodontal health and RA status (healthy n=21; PD n=21; RA n=21; RAPD n=19). Results: Zinc concentration in serum was significantly higher (p
Introduction:PTGS2 and DEFB1 single nucleotide polymorphisms (SNP) have been validated to be associated with chronic periodontitis (CP) in European, Japanese and Chinese populations. Polymorphisms of these genes play a role in the pathogenesis of CP. Thus far, no study has been done on the Malay ethnic group. Hence, this study assessed the allele and genotype frequencies of PTGS2 and DEFB1 variants in subjects with chronic periodontitis and healthy individuals in Malaysian Malays. Methods: Malay CP subjects and periodontally-healthy controls were obtained from Malaysian Periodontal Database and Biobanking system (MPDBS) for this case-control study. Diagnosis for cas-es was based on case definition by Eke et al (2012). DNA samples were genotyped for 4 candidate SNPs, rs689466, rs5275, rs20417 (PTGS2) and rs1047031 (DEFB1). Genotyping was carried out using Taqman genotyping method. The association between SNPs and study groups were assessed using logistic regression analysis. Results: DNA sam-ples from 140 individuals, 76 CP cases and 64 healthy controls were genotyped. Logistic regression results demon-strated that rs689466 for PTGS2 gene was associated with CP susceptibility in the Malay study group (p=0.03; OR: 1.80; 95% CI=1.05-3.07). The dominant and additive model test showed significant association with rs689466 (C/T) (pdominant-adjusted=0.02; OR: 2.22; 95% CI=1.11-4.43;padditive-adjusted=0.03; OR:1.85; 95% CI=1.07-3.19) after controlling for age and smoking. However, no significant association with CP was observed with other SNPs. Conclusion: The results suggest that rs689466 of PTGS2 gene may contribute to CP susceptibility in Malaysian Malay population in our preliminary study.
Introduction: Systemic lupus erythematosus (SLE) has a broad spectrum of clinical presentations. The diagnosis of SLE remains a challenge and largely depends on the presence of several serum autoantibodies including anti-nuclear antibody (ANA), anti-double-stranded DNA antibody (anti-dsDNA) and anti-Smith antibody (anti-Sm). ANA, a highly sensitive but not specific marker is used for SLE screening Anti-dsDNA and anti-Sm are SLE-specific biomarkers but has lower sensitivity of 80% and 30% for SLE, respectively. However, it is noted that there are SLE patients who are persistently negative for SLE-specific autoantibodies. Anti-dsDNA and anti-Sm were reported to be negative in up to 51.2% and 62.4% of SLE, respectively. This limitation can lead to misdiagnosis and halter proper treatment to SLE patients. Previous studies have suggested that cell membrane DNA (cmDNA) can act as a specific target for the autoantibodies in SLE patients. Autoantibodies towards cmDNA (anti-cmDNA) were reported to have promis-ing value as a reliable biomarker for SLE. In this study, we would like to determine the usefulness of anti-cmDNA in diagnosing SLE as compared to the standard SLE-specific autoantibodies. Methods: Serum samples from 83 SLE patients, 86 other connective tissue diseases and 61 healthy subjects were included in this study. The other connec-tive tissue diseases include samples from 10 Sjogren’s syndrome, 56 rheumatoid arthritis, 12 scleroderma and eight mixed connected tissues disease (MCTD) patients. All samples were analysed by indirect immunofluorescence (IIF) technique using Raji cells as substrate to detect the presence of anti-cmDNA. Anti-cmDNA was reported as positive if there was presence of a fluorescent ring, either continuous or punctate. Sera from SLE patients were also tested for anti-dsDNA and anti-Sm antibodies by using enzyme-immunoassays. Results: Anti-cmDNA positivity was highest in SLE (55.4%) than in other connective tissue diseases (9.3%) and healthy subjects (0%). Anti-cmDNA was 100% spe-cific at differentiating SLE from healthy subjects and 90.7% specific at differentiating SLE from other connective tissue diseases. There was no difference in the sensitivity (55.4%) of anti-cmDNA at differentiating SLE from both groups. Anti-cmDNA were present in 46 SLE samples negative for standard SLE-specific autoantibodies. It was detected in 11 (42.3%) of anti-dsDNA, 23 (63.9%) of anti-Sm and 8 (12.9%) of both anti-Sm and anti-dsDNA negative samples. Conclusion: The high specificity of anti-cmDNA detection using IIF method makes it an excellent diagnostic tool for SLE. Anti-cmDNA is potentially a very useful biomarker for SLE with negative anti-dsDNA or/and anti-Sm antibodies.
Introduction: Bladder cancer is associated with high risk of tumour recurrence and therapeutic resistance. Cancer stem cells (CSC) within a particular tumour are postulated to drive tumorigenesis and influence tumour behaviour. Recent studies have shown that Newcastle disease virus (NDV) is able to selectively kill and exert a strong oncolytic effect against various cancer types. However little is known about the oncolytic effect of NDV against CSC. In this study, the oncolytic effect of NDV against putative bladder CSC was examined. Methods: Putative bladder CSC was selectively grown in the form of 3D-spheroids from six different bladder cancer cell lines. The spheroid cells were characterised for their stemness properties to ensure that these cells truly represent CSC. This was conducted via the analysis of CSC associated genes and cell surface markers expression. Subsequently, the oncolytic effect of the wild-type NDV-AF2240 strain against the bladder cancer spheroids was investigated. Results: All the spheroids expressed significantly high levels of CSC-associated genes. Flow-cytometry analysis revealed that the expression pattern of the CSC-associated surface markers was different in the spheroid cells; suggesting heterogeneity in the expression signatures of these cells. The infection of spheroids with NDV showed that the NDV was able to target bladder cancer spheroids but there was a spectrum of response across the different spheroids. Intriguingly, NDV was able to persistently infect bladder cancer spheroids that were not sensitive towards NDV infection as the presence of NDV viral genes were detected in the spheroid cells. The NDV persistently infected bladder cancer spheroids were resistant to superinfection and developed an antiviral state by expressing low levels of interferon-beta (IFN-b). NDV persistency of infection affects the process of epithelial to mesenchymal transition (EMT) of cancer cells as the spheroid forming ability of an established NDV persistently infected bladder cancer cell line, EJ28-PI was shown to be impaired. The EJ28-PI cells expressed significantly high levels of the EN2 gene. Knockdown of the EN2 expression reduced the viability of EJ28-PI cells; suggesting a role for EN2 in mediating NDV persistency of infection in cancer cells. Conclusion: Bladder CSC gene expression signatures influence the efficacy of NDV-mediated oncolysis. Our current work is focused on identifying genes and signalling pathways that influence NDV-mediated oncolysis us-ing whole-transcriptomic sequencing. The findings of this study can potentially be used to enhance the efficacy of NDV-mediated oncolysis and accelerate the translation of NDV as an oncotherapeutic agent in the clinic.
Introduction: Acute myeloid leukaemia (AML) is a clonal haematological neoplasm characterised by proliferation of immature myeloid cells in the bone marrow resulting in impairment normal cell development in bone marrow. This leads to anaemia, thrombocytopenia and neutropenia. AML primarily affects older adults, with a median age at diagnosis of 69 years but is also seen in all other age groups. AML is recognized as a kind of cancer with marked heterogeneity in both biology of the cells and reactions to treatment. Treatment with intensive chemotherapy regi-mens of adult AML patients who are ≤ 60 years old results in hematologic remission in about 35% of patients, but at least 30% of these patients will experience a relapse. Mechanism leading to early relapse is still unclear. Leukaemia stem cell (LSC) is shown to correlate with poor prognosis. Biomarkers such as aldehyde dehydrogenase (ALDH) and CD34+CD38- have been identified as potential LSC biomarkers in previous studies. The objective of this study is to examine the expression of such markers for LSC and determine the association. Methods: Peripheral blood or bone marrow samples from untreated, newly diagnosed acute myeloid leukemias of all age, gender and race were collect-ed from Hospital Melaka and Kelang. Diagnosis of AML is based on WHO classification which include morphology, cytochemistry, immunophenotyping and cytogenetics. Mononuclear cells were isolated from bone marrow aspirate samples by gradient density centrifugation on Ficoll-Hypaque. Immunophenotyping using CD13, CD14, CD33, CD34, CD38 and ALDH were carried out to identify the presence and proportion of the various populations of inter-est. Results: There was a strong, positive correlation between ALDH and CD34+CD38- cell population, which was statistically significant (rs = 0.5989, p< 0.05). Conclusion: The strong correlation of ALDH activity and CD34+CD38- expression supported the potential of these biomarkers to identify LSCs cell in AML patients. However, due to the heterogeneity of AML, further studies using more markers and larger sample size are needed to determine the validity and to correlate with disease-free survival rate of AML patients.
The global burden of disease studies estimated that oral diseases affected half of the world’s population (3.58 billion people) with dental caries (tooth decay) in permanent teeth being the most prevalent condition assessed. On the other hand, the increasing resistance of dental caries towards the available antimicrobials and extensive use of the controversial synthetic chemicals to overcome these problems have attracted the scientific community’s attention to the search for new cost-effective remedies of natural products. Frankincense or Boswellia species are highly import-ant aromatic plants belonging to the Burseraceae family. The present study will focus on an in-vitro anti-inflamma-tion and anti-bacterial activity of Boswellia carterii (BC) Essential oil (EO) encapsulated into the Gum Arabic (GA) polymer. Thus, certain mouth pathogenic bacteria, which are the main contributors to dental caries and gingivitis, namely (Streptococcus mutans and Lactobacillus species), and their in-vitro responses to the defined micro-particles, will pave the way to introduce a new potential remedy to the forth mentioned problems.
Introduction: Immune response against viral infections and tumors not only requires the recruitment of immune cells but also cytokines. Cytokine dysregulation is associated with inflammatory diseases such as cancer, autoimmune diseases, infections and allergy. Intake of fruit and vegetables are known not only to reduce inflammation but may also provide protection against various diseases. Methods: Effects of selected fruits and herbs on cytokines profile of IL-8, IL-1β, IL-6, IL-10, TNF and IL-12p70 were examined using the CBA flow cytometric assay. Peripheral blood mononuclear cells (PBMC) obtained from blood samples of twelve healthy subjects aged 20 to 30 years [males = 6 and females = 6] were treated with papaya, mata kucing, dang shen and pu-erh tea, respectively, for 6 and 48 hours at various concentrations. In vivo effects was further tested on healthy volunteers [males = 2, females = 4] by 2-days consumption of papaya following 2-days washout period without papaya. The diet of volunteers was controlled with fixed meals. Results:In vitro results after 6 hours of culture showed that papaya-treated PBMC significantly increased IL-8, IL-1β and IL-6 but reduced IL-10. Mata kucing-treated PBMC significantly increased IL-8 but reduced IL-6 while pu-erh tea significantly reduced IL-8, IL-1β, IL-6 and TNF. Cytokine analysis for dang shen-treated PBMC was only conducted at 48 hours. After 48 hours, papaya extract significantly reduced IL-8, IL-6 (8000 μg/ml), IL-10 and TNF. Significant increase of IL-6 was observed at 4000 and 16000 μg/ml. Mata kucing extract significantly increased IL-1β, IL-6 but reduced TNF. Significant increase of TNF was observed at 16000 μg/ml. Dang shen and pu-erh tea reduced IL-8, IL-1β, IL-6, IL-10 and TNF. However, in vivo papaya consumption did not show any significant changes and levels were low. Conclusion: This study showed fruits such as papaya and mata kucing had both stimulatory and inhibitory effect on various pro-inflammatory cytokines while effect of herbs such as dang shen and pu-erh tea were inhibitory. Immunomodulatory studies of natural food such as fruits and herbs may provide better understanding and subsequently improve management of inflammatory diseases.
Introduction:Linum usitatissimum (flax seed) has been cultivated for domestic use since prehistoric times. Its use as a dietary supplement becomes more popular nowadays. Nigella sativa seeds and oils have been widely used for centuries in the treatment of various ailments throughout the world. It is an important drug in the Indian traditional system of medicine like Unani and Ayurveda. Methods: This is a laboratory experimental in-vitro study using select-ed oral pathogens (Streptococcus mutans, Klebsiella pneumoniae and Pseudomonas aeruginosa) cultured in nutrient agar. The pathogens were then inoculated in nutrient based broth and incubation for 24hours. Linum usitatissimum and Nigella sativa extract efficacy was tested by measurement of the zone of inhibition. The result of the extracts antimicrobial activities were compared with positive control (penicillin) and negative control(Dimethyl sulfoxide DMSO). The statistical analysis was done by using SPSS18. Results: The antibacterial effect of Linum usitatissimum and Nigella sativa extract is comparable to the effect of penicillin and this study shows that flax seed extract shows more potent antibacterial effect than Nigella sativa on Streptococcus mutans and Pseudomonas aeruginosa while both extracts didn’t show an effect on Klebsiella pneumoniae. Conclusion: The results of the present study scien-tifically validate the inhibitory capacity of Linum usitatissimum or Nigella sativa as antibiotic against selective oral pathogens this will contribute towards the development of new treatment options based on natural base products.
Introduction: It is well known that cancer cells evade the immune system with the help of programmed cell death protein 1 (PD-L1) molecule to remain undetected, causing abnormal proliferation of T-cells. PD-L1 expression on the surface of neoplastic cells inhibits cytotoxic T-cell responses which lead to negative regulation of cytokines and proliferation of T-cells. The deleted in colorectal cancer (DCC) gene belongs to the immunoglobulin superfamily. It is a candidate of the tumour suppressor gene by regulating apoptosis. DCC assessment gives an insight into progno-sis in patients with advanced stages of CRC. Thymidylate synthase (TYMS) is a highly conserved enzyme involved in DNA synthesis. TYMS has been an important target for cancer chemotherapy because of its central, rate-limiting role in de novo synthesis of thymidylate. Expression of PD-L1, TYMS and DCC has been demonstrated to confer a prognostic value in CRC but none have been completely validated for patient care. This study aimed to determine the prognostic and predictive potential of PD-L1, TYMS, and DCC biomarkers in CRC. Methods: The expression of these biomarkers was evaluated immunohistochemically in 91 formalin-fixed paraffin-embedded (FFPE) archival tumour samples from patients that underwent surgical resection. Results: There was high expression of DCC in most cases; 84.6% (77/91). TYMS expression at a high level score was 46.2% (42/91) and at low level was 53.8% (49/91). Majority of cases had low PD-L1 expression in 93.4% (86/91) cases and high expression was detected in 6.6% (6/94) of cases. In addition, there was a significant association between TYMS expression with gender (P < 0.05) with distribution of TYMS expression detected at high level was 76.2% in male and 23.8% in female. The Kaplan-Meier survival plot showed mean overall survival in patients with PD-L1 with high expression to be 22 months, which pre-dicts better survival. TYMS low expression showed mean overall survival of 90 which also indicated better survival. DCC high expression showed mean overall survival of 90 which indicated better survival. The correlation between the biomarkers and overall survival were not statistically significant. Conclusion: The results from this study suggest that PD-L1, TYMS and DCC expression could be used as biomarkers to predict treatment outcome in CRC. PD-L1 overexpression predicts patients who could benefit from anti-PD-1 and anti-PD-L1 immunotherapy whilst TYMS low expression predicts patients who could benefit from 5-fluorouracil therapy. DCC high expression tumours predicts a better prognosis and overall survival compared to DCC-negative tumours in advanced CRC.