Browse publications by year: 2019

  1. Kosiha A, Lo KM, Parthiban C, Elango KP
    Mater Sci Eng C Mater Biol Appl, 2019 Jan 01;94:778-787.
    PMID: 30423764 DOI: 10.1016/j.msec.2018.10.021
    Three metal(II) complexes [CoLCl2], [CuLCl2] and [ZnL2Cl2] {L = 2‑chloro‑3‑((3‑dimethylamino)propylamino)naphthalene‑1,4‑dione} have been synthesized and characterized using analytical, thermal and spectral techniques (FT-IR, UV-Vis, ESR and ESI-MS). The structure of the L has been confirmed by single crystal XRD study. The complexes show good binding propensity to bovine serum albumin (BSA) having relatively higher binding constant values (104 M-1) than the ligand. Fluorescence spectral studies indicate that [CoLCl2] binds relatively stronger with CT DNA through intercalative mode, exhibiting higher binding constant (2.22 × 105 M-1). Agarose gel electrophoresis run on plasmid DNA (pUC18) prove that all the complexes showed efficient DNA cleavage via hydroxyl radical mechanism. The complexes were identified as potent anticancer agents against two human cancer cell lines (MCF7 and A549) by comparing with cisplatin. Co(II) complex demonstrated greater cytotoxicity against MCF7 and A549 cells with IC50 values at 19 and 22 μM, respectively.
  2. Izadiyan Z, Basri M, Fard Masoumi HR, Abedi Karjiban R, Salim N, Kalantari K
    Mater Sci Eng C Mater Biol Appl, 2019 Jan 01;94:841-849.
    PMID: 30423770 DOI: 10.1016/j.msec.2018.10.015
    Nanoemulsions have been used as a drug carrier system, particularly for poorly water-soluble drugs. Sorafenib is a poorly soluble drug and also there is no parenteral treatment. The aim of this study is the development of nanoemulsions for intravenous administration of Sorafenib. The formulations were prepared by high energy emulsification method and optimized by using Response Surface Methodology (RSM). Here, the effect of independent composition variables of lecithin (1.16-2.84%, w/w), Medium-Chain Triglycerides (2.32-5.68%, w/w) and polysorbate 80 (0.58-1.42%, w/w) amounts on the properties of Sorafenib-loaded nanoemulsion was investigated. The three responses variables were particle size, zeta potential, and polydispersity index. Optimization of the conditions according to the three dependent variables was performed for the preparation of the Sorafenib-loaded nanoemulsions with the minimum value of particle size, suitable rage of zeta potential, and polydispersity index. A formulation containing 0.05% of Sorafenib kept its properties in a satisfactory range over the evaluated period. The composition with 3% Medium-Chain Triglycerides, 2.5% lecithin and 1.22% polysorbate 80 exhibited the smallest particle size and polydispersity index (43.17 nm and 0.22, respectively) with the zeta potential of -38.8 mV was the optimized composition. The fabricated nanoemulsion was characterized by the transmission electron microscope (TEM), viscosity, and stability assessment study. Also, the cytotoxicity result showed that the optimum formulations had no significant effect on a normal cell in a low concentration of the drug but could eliminate the cancer cells. The dose-dependent toxicity made it a suitable candidate for parenteral applications in the treatment of breast cancer. Furthermore, the optimized formulation indicated good storage stability for 3 months at different temperatures (4 ± 2 °C, 25 ± 2 °C and 45 ± 2 °C).
  3. Cader RA, Thoriappa K, Mohd R, Kong WY, Mustafar R, Kamaruzaman L
    Respir Med Case Rep, 2019;26:6-8.
    PMID: 30416956 DOI: 10.1016/j.rmcr.2018.10.022
    A 54 year old lady with underlying chronic lung disease on long term oxygen therapy and end stage renal disease of unknown aetiology on regular haemodialysis for two years started developing progressive shortness of breath during her routine haemodialysis. She was unable to tolerate her haemodialysis sessions which had to be terminated prematurely in view of her symptoms despite adjustment of her dry weight and treatment of anaemia. She was not in chronic fluid overload and her symptoms always worsened after initiation of haemodialysis and improved after termination of haemodialysis. She was admitted to hospital for further investigations and initially treated for a lung infection but her symptoms did not improve. A computed tomography pulmonary angiography did not reveal any evidence of pulmonary embolism, and was consistent with chronic fibrotic changes. Her hypoxemia was concluded to be due to her underlying chronic lung disease, worsened by alveolar hypoventilation during haemodialysis. Her symptoms improved slightly with supplemental oxygen during her routine haemodialysis but we had to shorten her haemodialysis duration to 3 hours.
    MeSH terms: Anemia; Angiography; Dyspnea; Female; Renal Dialysis; Hypoventilation; Kidney Failure, Chronic; Lung Diseases; Oxygen; Pulmonary Embolism; Tomography
  4. Nasir ANM, Yahaya N, Zain NNM, Lim V, Kamaruzaman S, Saad B, et al.
    Food Chem, 2019 Mar 15;276:458-466.
    PMID: 30409620 DOI: 10.1016/j.foodchem.2018.10.044
    Thiol-functionalized magnetic carbon nanotubes (TMCNTs) were employed as the sorbent in the magnetic micro-solid phase extraction (M-µ-SPE) of sulfonamide antibiotics (SAs) in water, milks and chicken meat products prior to high performance liquid chromatography-diode array detector (HPLC-DAD) analysis. The synthesized sorbent was characterized by several spectroscopic techniques. Optimum conditions were: 20 mg of TMCNTs at pH 4, 2 min extraction time, 10% addition of salt and 30 mL of sample volume. Under the optimized TMCNTs-M-µ-SPE and HPLC-DAD conditions, the method showed good linearity in the range of 0.1-500 µg L-1 (r2 ≥ 0.9950), low limits of detection (0.02-1.5 µg L-1), good analytes recovery (80.7-116.2%) and acceptable RSDs (0.3-7.7%, n = 15). The method was applied to tap water (1), milks (15) and commercial chicken meat products (35), SAs were detected in five chicken meat samples (3.0-25.7 µg L-1). The method is critically compared to those reported in the literature.
  5. Yap BK, Gam LH
    Food Chem, 2019 Feb 15;274:16-19.
    PMID: 30372921 DOI: 10.1016/j.foodchem.2018.08.111
    Gelatin is commonly used in food supplements and in the form of soft or hard capsules. The source of gelatins is usually from porcine and bovine, and less commonly from vegetable and fish. Nevertheless, these different origins of gelatin have much similarity in term of structures, physicochemical properties and amino acid sequences. Due to these reasons, differentiation of the source of gelatins has been very difficult. In our present study, differentiation of sources of gelatin was made possible in a simplified yet economical method. Sample was prepared using ammonium sulfate precipitation and subjected to gel electrophoresis for protein separation. We have found a fraction of proteins which is able to differentiate porcine and bovine gelatins accurately, with distinctive protein bands in SDS-PAGE at 140 kDa and 110 kDa for bovine and porcine samples, respectively. This method was verified by 13 double-blinded gelatin samples, all the 13 samples were accurately identified.
  6. Chai KF, Adzahan NM, Karim R, Rukayadi Y, Ghazali HM
    Food Chem, 2019 Feb 15;274:808-815.
    PMID: 30373014 DOI: 10.1016/j.foodchem.2018.09.065
    Rambutan seed is usually discarded during fruit processing. However, the seed contains a considerable amount of crude fat. Hence, the objective of this study was to investigate the fat properties and antinutrient content of the seed during fermentation of rambutan fruit. Results showed that the crude fat content of the seed reduced by 22% while its free fatty acid content increased by 4.3 folds after 10 days of fermentation. Arachidic acid was selectively reduced and was replaced by linoleic acid from the seventh day of fermentation onwards. Only 14.5% of triacylglycerol remained in the seed fat at the end of fermentation. The complete melting temperature, crystallization onset temperature and solid fat index at 37 °C of the fermented seed fat were higher than that of non-fermented seed fat. The saponin and tannin contents of the seed were reduced by 67% and 47%, respectively, after fermentation.
  7. Pham TV, Nguyen TT, Nguyen DT, Thuan TV, Bui PQT, Viet VND, et al.
    J Nanosci Nanotechnol, 2019 Feb 01;19(2):1122-1125.
    PMID: 30360214 DOI: 10.1166/jnn.2019.15926
    Recently, the graphite based materials have gained interest as excellent platforms to remove aqueous pollutants via adsorption routes. This is given that such materials possess large specific surface area and low density. In the present work, a comparative study of two facile and effective approaches is conventional thermal heating and microwave irradiation methods to fabricate expanded graphite from available flake graphite sources of Vietnam for oil-contaminated water purification. The as-prepared expanded graphite was characterized by using FT-IR, SEM, XRD and BET analysis. The results exhibited that expanded graphite has multilevel pore structures and the surface area of expanded graphite obtained from microwave irradiation and conventional heating was 147.5 (m²/g) and 100.97 (m²/g) under optimal processing conditions. The as-synthesized expanded graphite from the microwave irradiation method was found to have higher adsorption capacities for diesel oil, crude oil, and fuel oil compared to conventional heating method.
  8. Ranjbar Jafarabadi A, Riyahi Bakhtiari A, Yaghoobi Z, Kong Yap C, Maisano M, Cappello T
    Chemosphere, 2019 Jan;215:835-845.
    PMID: 30359953 DOI: 10.1016/j.chemosphere.2018.10.092
    This is the first report on bioaccumulation of polycyclic aromatic hydrocarbons (PAHs) and their derivatives (oxygen, nitrogen, sulfur, hydroxyl, carbonyl and methyl-containing PAHs) in three edible marine fishes, namely Lutjanus argentimaculatus, Lethrinus microdon and Scomberomorus guttatus, from Kharg Island, Persian Gulf, Iran. The concentrations (ng g-1dw) of Σ39PAHs resulted significantly higher in fish liver than muscle, with the PAH composition pattern dominated by low molecular weight compounds (naphthalene, alkyl-naphthalenes and phenanthrene). The highest mean concentrations of ∑9 oxygenated and ∑15 hydroxylated PAHs (ng g-1dw) were found ound in L. microdon and L. argentimaculatus, respectively, while the lowest values in S. guttatus. Additionally, the highest mean concentrations of Σ5 carbonylic PAHs (ng g-1dw) were found in L. argentimaculatus, followed by L. microdon. The PAHs levels and distribution in fish liver and muscle were dependent on both the Kow of PAHs congeners and fish lipid contents. Overall, the present findings provide important baseline data for further research on the ecotoxicity of PAHs in aquatic organisms, and consequent implications for human health.
  9. Ravit R, Abdullah J, Ahmad I, Sulaiman Y
    Carbohydr Polym, 2019 Jan 01;203:128-138.
    PMID: 30318196 DOI: 10.1016/j.carbpol.2018.09.043
    Supercapacitor electrode based on conducting polymer of poly (3,4-ethylenedioxythipohene) (PEDOT) doped with nanocrystalline cellulose (NCC) films were prepared via electrochemical polymerization technique. Different applied potential, concentration and deposition time were varied to study the effect of electropolymerization potential, NCC concentration and deposition time on the formation of PEDOT/NCC film. The formation of electrochemically polymerized PEDOT/NCC composite was successfully proven with field emission scanning electron microscope (FESEM) and Fourier transform infrared spectroscopy (FTIR) techniques where the composites exhibited an interconnected network-like surface morphology. PEDOT/NCC deposited at 1.2 V in 1 mg/ml of NCC for 15 min showed the highest specific capacitance of 117.02 F/g at 100 mV/s with energy density and power density of 11.44 Wh/kg and 99.85 W/kg, respectively at the current density of 0.2 A/g. The incorporation of NCC into PEDOT revealed a lower resistance of charge transfers and improves the cycling stability by retaining 86% of capacitance after 1000 cycles.
  10. Kuwano N, Kaur J, Rahmah S
    Micron, 2019 Jan;116:80-83.
    PMID: 30321742 DOI: 10.1016/j.micron.2018.09.014
    Aluminum nitride (AlN) crystallizes usually in the wurtzite structure (P63mc) and it has a crystallographic polarity. In this work, the polarity in AlN was characterized by using several methods of transmission electron microscopy (TEM) in order to examine their applicability. AlN was deposited by metalorganic vapor phase epitaxy (MOVPE), followed by annealing at 1550 °C. TEM samples were prepared by using a focused ion beam (FIB) mill. Observation was performed with microscopes of JEM-2100, JEM-ARM200 F and FEI Titan Cubed G2 at Kyushu University (Japan), and the following results were obtained. (1) Conventional TEM imaging: Under a diffraction condition with hkil = 0002, inversion domains or an inversion domain boundary (IDB) was observed. (2) Scanning TEM (STEM) High-Angle Annular Dark Field (HAADF) imaging: Even when atomic column images of Al and N are not resolved completely from each other, the polarity was determined from the shape of atomic column images. (3) Scanning moire fringe imaging: The moire fringe pattern indicated the position of IDB and determine the direction of polarity. (4) Convergent beam electron diffraction (CBED): CBED was applicable for determination of the polarity in AlN at the acceleration voltage of 120 kV. Hence the polarity, direction of polarity and inversion domain boundary was determined using advanced TEM methods.
  11. Yien Fang T, Praveena SM, Aris AZ, Syed Ismail SN, Rasdi I
    Chemosphere, 2019 Jan;215:153-162.
    PMID: 30316157 DOI: 10.1016/j.chemosphere.2018.10.032
    Steroid estrogens, such as 17β-estradiol (E2) and 17α-ethynylestradiol (EE2) are potent and were categorized as "Watch List" in Directive 2013/39/EU because of their potential risks to aquatic environment. Commercialized enzyme-linked immunosorbent assay (ELISA) kits have been used to quantify steroid estrogens in wastewater samples due to their simplicity, rapid, cost-effectiveness, and validated assays. Hence, this study aims to determine the occurrence and removal of steroid hormones in Malaysian wastewater treatment plants (WWTPs) by ELISA, to identify the association of removal efficiency (E2 and EE2) with respect to WWTPs operating conditions, and to assess the potential risks of steroid estrogens to aquatic environment and human. Results showed E2 concentration ranged from 88.2 ± 7.0 ng/L to 93.9 ± 6.9 ng/L in influent and 35.1 ± 17.3 ng/L to 85.2 ± 7.6 ng/L in effluent, with removal of 6.4%-63.0%. The EE2 concentration ranged from 0.2 ± 0.2 ng/L to 4.9 ± 6.3 ng/L in influent and 0.02 ± 0.03 ng/L to 1.0 ± 0.8 ng/L in effluent, with removal of 28.3-99.3%. There is a correlation between EE2 removal with total suspended solid (TSS) and oxidation reduction potential (ORP), and was statistically significant. Despite the calculated estrogenic activity for E2 and EE2 was relatively high, dilution effects could lower estrogenic response to aquatic environment. Besides, these six selected WWTPs have cumulative RQ values below the allowable limit, except WWTP 1. Relatively high precipitation (129-218 mm) could further dilute estrogens concentration in the receiving river. These outputs can be used as quantitative information for evaluating the occurrence and removal of steroid estrogens in Malaysian WWTPs.
  12. Khan MF, Hamid AH, Bari MA, Tajudin ABA, Latif MT, Nadzir MSM, et al.
    Sci. Total Environ., 2019 Feb 10;650(Pt 1):1195-1206.
    PMID: 30308807 DOI: 10.1016/j.scitotenv.2018.09.072
    Equatorial warming conditions in urban areas can influence the particle number concentrations (PNCs), but studies assessing such factors are limited. The aim of this study was to evaluate the level of size-resolved PNCs, their potential deposition rate in the human respiratory system, and probable local and transboundary inputs of PNCs in Kuala Lumpur. Particle size distributions of a 0.34 to 9.02 μm optical-equivalent size range were monitored at a frequency of 60 s between December 2016 and January 2017 using an optical-based compact scanning mobility particle sizer (SMPS). Diurnal and correlation analysis showed that traffic emissions and meteorological confounding factors were potential driving factors for changes in the PNCs (Dp ≤1 μm) at the modeling site. Trajectory modeling showed that a PNC <100/cm3 was influenced mainly by Indo-China region air masses. On the other hand, a PNC >100/cm3 was influenced by air masses originating from the Indian Ocean and Indochina regions. Receptor models extracted five potential sources of PNCs: industrial emissions, transportation, aged traffic emissions, miscellaneous sources, and a source of secondary origin coupled with meteorological factors. A respiratory deposition model for male and female receptors predicted that the deposition flux of PM1 (particle mass ≤1 μm) into the alveolar (AL) region was higher (0.30 and 0.25 μg/h, respectively) than the upper airway (UA) (0.29 and 0.24 μg/h, respectively) and tracheobronchial (TB) regions (0.02 μg/h for each). However, the PM2.5 deposition flux was higher in the UA (2.02 and 1.68 μg/h, respectively) than in the TB (0.18 and 0.15 μg/h, respectively) and the AL regions (1.09 and 0.91 μg/h, respectively); a similar pattern was also observed for PM10.
    MeSH terms: Air Pollutants/analysis*; Air Pollution/statistics & numerical data*; Cities; Environmental Monitoring*; Humans; Malaysia; Meteorological Concepts; Respiratory System; Inhalation Exposure/statistics & numerical data*; Particulate Matter/analysis*
  13. Tan K, Heo S, Foo M, Chew IM, Yoo C
    Sci. Total Environ., 2019 Feb 10;650(Pt 1):1309-1326.
    PMID: 30308818 DOI: 10.1016/j.scitotenv.2018.08.402
    Nanocellulose, a structural polysaccharide that has caught tremendous interests nowadays due to its renewability, inherent biocompatibility and biodegradability, abundance in resource, and environmental friendly nature. They are promising green nanomaterials derived from cellulosic biomass that can be disintegrated into cellulose nanofibrils (CNF) or cellulose nanocrystals (CNC), relying on their sensitivity to hydrolysis at the axial spacing of disordered domains. Owing to their unique mesoscopic characteristics at nanoscale, nanocellulose has been widely researched and incorporated as a reinforcement material in composite materials. The world has been consuming the natural resources at a much higher speed than the environment could regenerate. Today, as an uprising candidate in soft condensed matter physics, a growing interest was received owing to its unique self-assembly behaviour and quantum size effect in the formation of three-dimensional nanostructured material, could be utilised to address an increasing concern over global warming and environmental conservation. In spite of an emerging pool of knowledge on the nanocellulose downstream application, that was lacking of cross-disciplinary study of its role as a soft condensed matter for food, water and energy applications toward environmental sustainability. Here we aim to provide an insight for the latest development of cellulose nanotechnology arises from its fascinating physical and chemical characteristic for the interest of different technology holders.
    MeSH terms: Natural Resources; Cellulose; Hydrolysis; Physics; Water; Biomass; Nanotechnology; Nanostructures; Nanoparticles; Global Warming
  14. Kassim NK, Lim PC, Ismail A, Awang K
    Food Chem, 2019 Jan 30;272:185-191.
    PMID: 30309531 DOI: 10.1016/j.foodchem.2018.08.045
    The application of preparative thin layer chromatography-2,2-diphenyl-1-picrylhydrazyl (PTLC-DPPH) bioautography technique successfully isolated a lignan sesamin (1), two prenylated coumarins (2 and 3) and a marmesin glycosides (4) from Micromelum minutum methanol bark extract. Compounds 2 and 3 were identified as new compounds whereas 1 and 4 were first isolated from Micromelum genus. Structural identification of all compounds were done by detailed spectroscopic analyses and comparison with literature data. Antioxidant capacities of extract, active fraction and compounds were measured based on DPPH free radical savenging activity, oxygen radical absorbance capacity (ORAC) and β-carotene bleaching. The DPPH activity of methanol extract and its fraction present the IC50 values of 54.3 and 168.9 µg/mL meanwhile the β-carotene bleaching results were 55.19% and 5.75% respectively. The ORAC measurements of M. minutum extract, compounds 2 and 4 showed potent antioxidant activity with the values of 5123, 5539 and 4031 µmol TE/g respectively.
  15. Lim SJ, Wan Aida WM, Schiehser S, Rosenau T, Böhmdorfer S
    Food Chem, 2019 Jan 30;272:222-226.
    PMID: 30309536 DOI: 10.1016/j.foodchem.2018.08.034
    Fucoidan is a sulphated polysaccharide, made up mainly of l-fucose, which is found in brown seaweeds. Its chemical structure is diverse and depends on maturity, species and geographical location. The objective of this study was to elucidate the chemical structure of fucoidan from Cladosiphon okamuranus harvested in Japan. The fucoidan was subject to purification prior to monosaccharide profiling, sulphate content determination, and linkage analysis. Our results showed that Japanese Cladosiphon okamuranus fucoidan contained 70.13 ± 0.22 wt% fucose and 15.16 ± 1.17 wt% sulphate. Other minor monosaccharides found were d-xylose, d-galactose, d-mannose, d-glucose, d-arabinose, d-rhamnose and d-glucuronic acid. Linkage analysis revealed that fucopyranoside units along the backbone are linked, through α-1,3-glycosidic bonds, with fucose branching at C-2, and one sulphate group at C-4 per every three fucose units, i.e. the structure of fucoidan from Japanese Cladosiphon okamuranus is [→3)-α-fuc(1→]0.52[→3)-α-fuc-4-OSO3-(1→]0.33[→2)-α-fuc]0.14.
  16. Nordin N, Ho LN, Ong SA, Ibrahim AH, Lee SL, Ong YP
    Chemosphere, 2019 Jan;214:614-622.
    PMID: 30292044 DOI: 10.1016/j.chemosphere.2018.09.144
    The hybrid system of photocatalytic fuel cell - peroxi-coagulation (PFC-PC) is a sustainable and green technology to degrade organic pollutants and generate electricity simultaneously. In this study, three different types of photocatalysts: TiO2, ZnO and α-Fe2O3 were immobilized respectively on carbon cloth (CC), and applied as photoanodes in the photocatalytic fuel cell of this hybrid system. Photocatalytic fuel cell was employed to drive a peroxi-coagulation process by generating the external voltage accompanying with degrading organic pollutants under UV light irradiation. The degradation efficiency of Amaranth dye and power output in the hybrid system of PFC-PC were evaluated by applying different photoanode materials fabricated in this study. In addition, the effect of light on the photocurrent of three different photoanode materials was investigated. In the absence of light, the reduction of photocurrent percentage was found to be 69.7%, 17.3% and 93.2% in TiO2/CC, ZnO/CC and α-Fe2O3/CC photoanodes, respectively. A maximum power density (1.17 mWcm-2) and degradation of dye (93.8%) at PFC reactor were achieved by using ZnO/CC as photoanode. However, the different photoanode materials at PFC showed insignificant difference in dye degradation trend in the PC reactor. Meanwhile, the degradation trend of Amaranth at PFC reactor was influenced by the recombination rate, electron mobility and band gap energy of photocatalyst among different photoanode materials.
  17. Tang KHD
    Sci. Total Environ., 2019 Feb 10;650(Pt 2):1858-1871.
    PMID: 30290336 DOI: 10.1016/j.scitotenv.2018.09.316
    PURPOSE: This paper reviews the past and future trends of climate change in Malaysia, the major contributors of greenhouse gases and the impacts of climate change to Malaysia. It also reviews the mitigation and adaptations undertaken, and future strategies to manage the impacts of regional climate change.

    METHODOLOGY: The review encompasses historical climate data comprising mean daily temperature, precipitation, mean sea level and occurrences of extreme weather events. Future climate projections have also been reviewed in addition to scholarly papers and news articles related to impacts, contributors, mitigation and adaptations in relation to climate change.

    FINDINGS: The review shows that annual mean temperature, occurrences of extreme weather events and mean sea level are rising while rainfall shows variability. Future projections point to continuous rise of temperature and mean sea level till the end of the 21st century, highly variable rainfall and increased frequency of extreme weather events. Climate change impacts particularly on agriculture, forestry, biodiversity, water resources, coastal and marine resources, public health and energy. The energy and waste management sectors are the major contributors to climate change. Mitigation of and adaptations to climate change in Malaysia revolve around policy setting, enactment of laws, formulation and implementation of plans and programmes, as well as global and regional collaborations, particularly for energy, water resources, agriculture and biodiversity. There are apparent shortcomings in continuous improvement and monitoring of the programmes as well as enforcement of the relevant laws.

    ORIGINALITY/VALUE: This paper presents a comprehensive review of the major themes of climate change in Malaysia and recommends pertinent ways forward to fill the gaps of mitigation and adaptations already implemented.

    MeSH terms: Acclimatization; Agriculture; Malaysia; Public Health; Temperature; Weather; Forestry; Waste Management; Biodiversity; Climate Change; Water Resources
  18. Tan CH, Tan KY, Tan NH
    Methods Mol. Biol., 2019;1871:83-92.
    PMID: 30276733 DOI: 10.1007/978-1-4939-8814-3_5
    Snake venoms are complex mixtures of proteins and peptides that play vital roles in the survival of venomous snakes. As with their diverse pharmacological activities, snake venoms can be highly variable, hence the importance of understanding the compositional details of different snake venoms. However, profiling venom protein mixtures is challenging, in particular when dealing with the diversity of protein subtypes and their abundances. Here we described an optimized strategy combining a protein decomplexation method with in-solution trypsin digestion and mass spectrometry of snake venom proteins. The approach involves the integrated use of C18 reverse-phase high-performance liquid chromatography (RP-HPLC), sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), and nano-electrospray ionization tandem mass spectrometry (nano-ESI-LC-MS/MS).
    MeSH terms: Chromatography, High Pressure Liquid; Chromatography, Liquid; Electrophoresis, Polyacrylamide Gel; Peptides; Snake Venoms; Snakes; Sodium Dodecyl Sulfate; Trypsin; Spectrometry, Mass, Electrospray Ionization; Tandem Mass Spectrometry; Chromatography, Reverse-Phase
  19. Tan CH, Tan KY
    Methods Mol. Biol., 2019;1871:153-158.
    PMID: 30276739 DOI: 10.1007/978-1-4939-8814-3_11
    Reverse-phase high-performance liquid chromatography is commonly employed as a decomplexing strategy in snake venom proteomics. The chromatographic fractions often contain relatively pure toxins that can be assessed functionally for toxicity level through the determination of their median lethal doses (LD50). Further, antivenom efficacy can be evaluated specifically against these venom fractions to understand the limitation of the antivenom as the treatment for snake envenomation. However, methods of toxicity assessment and antivenom evaluation vary across laboratories; hence there is a need to standardize the protocols and parameters, in particular those related to the neutralizing efficacy of antivenom. This chapter outlines the important in vivo techniques and data interpretation that can be applied in the functional study of snake venom proteomes.
    MeSH terms: Antivenins; Chromatography, High Pressure Liquid; Lethal Dose 50; Snake Bites; Snake Venoms; Toxins, Biological; Proteome; Proteomics; Chromatography, Reverse-Phase
  20. Eamsobhana P, Yong HS, Song SL, Gan XX, Prasartvit A, Tungtrongchitr A
    Parasitol. Int., 2019 Feb;68(1):24-30.
    PMID: 30267903 DOI: 10.1016/j.parint.2018.09.006
    Angiostrongylus cantonensis is the main causative agent of human angiostrongyliasis. A sibling species, A. malaysiensis has not been unequivocally incriminated to be involved in human infections. To date, there is only a single report on the application of the partial 66-kDa protein gene sequence for molecular differentiation and phylogeny of Angiostrongylus species. Nucleotide sequences of the 66-kDa protein gene of A. cantonensis and A. malaysiensis from Thailand, as well as those of the laboratory strains of A. cantonensis from Thailand and Hawaii, A. cantonensis from Japan and China, A. malaysiensis from Malaysia, and A. costaricensis from Costa Rica, were used for the reconstruction of phylogenetic tree by the maximum likelihood (ML) method and the haplotypes by the median joining (MJ) network. The ML phylogenetic tree contained two major clades with a full support bootstrap value - (1) A. cantonensis and A. malaysiensis, and (2) A. costaricensis. A. costaricensis was basal to A. cantonensis and A. malaysiensis. The genetic distance between A. cantonensis and A. malaysiensis ranged from p = .82% to p = 3.27%, that between A. cantonensis and A. costaricensis from p = 4.90% to p = 5.31%, and that between A. malaysiensis and A. costaricensis was p = 4.49% to p = 5.71%. Both A. cantonensis and A. malaysiensis possess high 66-kDa haplotype diversity. There was no clear separation of the conspecific taxa of A. cantonensis and A. malaysiensis from different geographical regions. A more intensive and extensive sampling with larger sample size may reveal greater haplotype diversity and a better resolved phylogeographical structure of A. cantonensis and A. malaysiensis.
External Links