Browse publications by year: 2021

  1. Mohammed Fitri TF, Osman AF, Alosime EM, Othman R, Hashim F, Abdullah MAA
    Polymers (Basel), 2021 Dec 12;13(24).
    PMID: 34960896 DOI: 10.3390/polym13244345
    Poly(ethylene-vinyl acetate) (PEVA) nanocomposite incorporating dual clay nanofiller (DCN) of surface modified montmorillonite (S-MMT) and bentonite (Bent) was studied for biomedical applications. In order to overcome agglomeration of the DCN, the S-MMT and Bent were subjected to a physical treatment prior to being mixed with the copolymer to form nanocomposite material. The S-MMT and Bent were physically treated to become S-MMT(P) and Bent(pH-s), respectively, that could be more readily dispersed in the copolymer matrix due to increments in their basal spacing and loosening of their tactoid structure. The biocompatibility of both nanofillers was assessed through a fibroblast cell cytotoxicity assay. The mechanical properties of the neat PEVA, PEVA nanocomposites, and PEVA-DCN nanocomposites were evaluated using a tensile test for determining the best S-MMT(P):Bent(pH-s) ratio. The results were supported by morphological studies by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). Biostability evaluation of the samples was conducted by comparing the ambient tensile test data with the in vitro tensile test data (after being immersed in simulated body fluid at 37 °C for 3 months). The results were supported by surface degradation analysis. Our results indicate that the cytotoxicity level of both nanofillers reduced upon the physical treatment process, making them safe to be used in low concentration as dual nanofillers in the PEVA-DCN nanocomposite. The results of tensile testing, SEM, and TEM proved that the ratio of 4:1 (S-MMT(P):Bent(pH-s)) provides a greater enhancement in the mechanical properties of the PEVA matrix. The biostability assessment indicated that the PEVA-DCN nanocomposite can achieve much better retention in tensile strength after being subjected to the simulated physiological fluid for 3 months with less surface degradation effect. These findings signify the potential of the S-MMT(P)/Bent(pH-s) as a reinforcing DCN, with simultaneous function as biostabilizing agent to the PEVA copolymer for implant application.
  2. Mohd Basri MS, Mustapha F, Mazlan N, Ishak MR
    Polymers (Basel), 2021 Dec 14;13(24).
    PMID: 34960924 DOI: 10.3390/polym13244373
    Compressive strength is an important property in construction material, particularly for thermal insulation purposes. Although the insulation materials possess high fire-retardant characteristics, their mechanical properties are relatively poor. Moreover, research on the correlation between fire-retardant and compressive strength of rice husk ash (RHA)-based geopolymer binder (GB) is rather limited. In addition, previous studies on RHA-based GB used the less efficient one-factor-at-a-time (OFAT) approach. In understanding the optimum value and significant effect of factors on the compressive strength, it was deemed necessary to employ statistical analysis and a regression coefficient model (mathematical model). The objective of the study is to determine the effect of different material behavior, namely brittle and ductile, on the compressive strength properties and the optimum material formulation that can satisfy both compressive strength and fire-retardant properties. The factors chosen for this study were the rice husk ash/activated alkaline solution (RHA/AA) ratio and the sodium hydroxide (NaOH) concentration. Compressive strength and fire-retardant tests were conducted as part of the experiments, which were designed and analyzed using the response surface methodology (RSM). The microstructure of geopolymer samples was investigated using a scanning electron microscope (SEM). Results showed that RHA/AA ratio was highly significant (p < 0.000) followed by NaOH concentration (p < 0.024). When the RHA/AA ratio was at 0.7 to 0.8 and the NaOH concentration was between 12 and 14 M, high compressive strength above 28 MPa was recorded. Optimum compressive strength of approximately 47 MPa was achieved when the RHA/AA ratio and NaOH concentration were 0.85 and 14 M, respectively. Brittle samples with low Si/Al ratio of 88.95 were high in compressive strength, which is 33.55 MPa, and showed a high degree of geopolymerization. Inversely, ductile samples showed low compressive strength and degree of geopolymerization. Water content within the geopolymer binder had a major effect on its fire-retardant properties. Semi-ductile GB showed the best fire-retardant properties, followed by semi-brittle and brittle GB. Using RHA as an aluminosilicate source has proven to be a promising alternative.
  3. Saufi SASA, Zuhri MYM, Dezaki ML, Sapuan SM, Ilyas RA, As'arry A, et al.
    Polymers (Basel), 2021 Dec 14;13(24).
    PMID: 34960939 DOI: 10.3390/polym13244388
    The bio-inspired structure (e.g., honeycomb) has been studied for its ability to absorb energy and its high strength. The cell size and wall thickness are the main elements that alter the structural ability to withstand load and pressure. Moreover, adding a secondary structure can increase the compressive strength and energy absorption (EA) capability. In this study, the bio-inspired structures are fabricated by fused deposition modelling (FDM) technology using polylactic acid (PLA) material. Samples are printed in the shape of a honeycomb structure, and a starfish shape is used as its reinforcement. Hence, this study focuses on the compression strength and EA of different cell sizes of 20 and 30 mm with different wall thicknesses ranging from 1.5 to 2.5 mm. Subsequently, the deformation and failure of the structures are determined under the compression loading. It is found that the smaller cell size with smaller wall thickness offered a crush efficiency of 69% as compared to their larger cell size with thicker wall thickness counterparts. It is observed that for a 20 mm cell size, the EA and maximum peak load increase, respectively, when the wall thickness increases. It can be concluded that the compression strength and EA capability increase gradually as the cell size and wall thickness increase.
  4. Tan SX, Andriyana A, Lim S, Ong HC, Pang YL, Ngoh GC
    Polymers (Basel), 2021 Dec 15;13(24).
    PMID: 34960953 DOI: 10.3390/polym13244398
    The present study was conducted to optimize the extraction yield of starch from sago (Metroxylon sagu) pith waste (SPW) with the assistance of ultrasound ensued by the transformation of extracted starch into a higher value-added bioplastic film. Sago starch with extraction yield of 71.4% was successfully obtained using the ultrasound-assisted extraction, with the following conditions: particle size <250 µm, solid loading of 10 wt.%, ultrasonic amplitude of 70% and duty cycle of 83% in 5 min. The rapid ultrasound approach was proven to be more effective than the conventional extraction with 60.9% extraction yield in 30 min. Ultrasound-extracted starch was found to exhibit higher starch purity than the control starch as indicated by the presence of lower protein and ash contents. The starch granules were found to have irregular and disrupted surfaces after ultrasonication. The disrupted starch granules reduced the particle size and increased the swelling power of starch which was beneficial in producing a film-forming solution. The ultrasound-extracted sago starch was subsequently used to prepare a bioplastic film via solution casting method. A brownish bioplastic film with tensile strength of 0.9 ± 0.1 MPa, Young's modulus of 22 ± 0.8 MPa, elongation at break of 13.6 ± 2.0% and water vapour permeability (WVP) of 1.11 ± 0.1 × 10-8 g m-1 s-1 Pa-1 was obtained, suggesting its feasibility as bioplastic material. These findings provide a means of utilization for SPW which is in line with the contemporary trend towards greener and sustainable products and processes.
  5. Ambarita AC, Mulyati S, Arahman N, Bilad MR, Shamsuddin N, Ismail NM
    Polymers (Basel), 2021 Dec 17;13(24).
    PMID: 34960986 DOI: 10.3390/polym13244436
    Polyethersulfone (PES) is the most commonly used polymer for membrane ultrafiltration because of its superior properties. However, it is hydrophobic, as such susceptible to fouling and low permeation rate. This study proposes a novel bio-based additive of dragonbloodin resin (DBR) for improving the properties and performance of PES-based membranes. Four flat sheet membranes were prepared by varying the concentration of DBR (0-3%) in the dope solutions using the phase inversion method. After fabrication, the membranes were thoroughly characterized and were tested for filtration of humic acid solution to investigate the effect of DBR loading. Results showed that the hydrophilicity, porosity, and water uptake increased along with the DBR loadings. The presence of DBR in the dope solution fastened the phase inversion, leading to a more porous microstructure, resulted in membranes with higher number and larger pore sizes. Those properties led to more superior hydraulic performances. The PES membranes loaded with DBR reached a clean water flux of 246.79 L/(m2·h), 25-folds higher than the pristine PES membrane at a loading of 3%. The flux of humic acid solution reached 154.5 ± 6.6 L/(m2·h), 30-folds higher than the pristine PES membrane with a slight decrease in rejection (71% vs. 60%). Moreover, DBR loaded membranes (2% and 3%) showed an almost complete flux recovery ratio over five cleaning cycles, demonstrating their excellent antifouling property. The hydraulic performance could possibly be enhanced by leaching the entrapped DBR to create more voids and pores for water permeation.
  6. Harith-Fadzilah N, Lam SD, Haris-Hussain M, Ghani IA, Zainal Z, Jalinas J, et al.
    Plants (Basel), 2021 Nov 25;10(12).
    PMID: 34961045 DOI: 10.3390/plants10122574
    The red palm weevil (RPW; Rhynchophorus ferrugineus Olivier (Coleoptera Curculionidae)) is an invasive insect pest that is difficult to manage due to its nature of infesting the host palm trees from within. A holistic, molecular-based approach to identify proteins that correlate with RPW infestation could give useful insights into the vital processes that are prevalent to the host's infestation response and identify the potential biomarkers for an early detection technique. Here, a shotgun proteomic analysis was performed on oil palm (Elaeis guineensis; OP) under untreated (control), wounding by drilling (wounded), and artificial larval infestation (infested) conditions at three different time points to characterise the RPW infestation response at three different stages. KEGG pathway enrichment analysis revealed many overlapping pathways between the control, wounded, and infested groups. Further analysis via literature searches narrowed down biologically relevant proteins into categories, which were photosynthesis, growth, and stress response. Overall, the patterns of protein expression suggested abscisic acid (ABA) hormone signalling to be the primary driver of insect herbivory response. Interspecies molecular docking analysis between RPW ligands and OP receptor proteins provided putative interactions that result in ABA signalling activation. Seven proteins were selected as candidate biomarkers for early infestation detection based on their relevance and association with ABA signalling. The MS data are available via ProteomeXchange with identifier PXD028986. This study provided a deeper insight into the mechanism of stress response in OP in order to develop a novel detection method or improve crop management.
  7. Kemat N, Visser RGF, Krens FA
    Plants (Basel), 2021 Nov 29;10(12).
    PMID: 34961095 DOI: 10.3390/plants10122625
    One of the characteristics of hyperhydric plants is the reduction of cell wall lignification (hypolignification), but how this is related to the observed abnormalities of hyperhydricity (HH), is still unclear. Lignin is hydrophobic, and we speculate that a reduction in lignin levels leads to more capillary action of the cell wall and consequently to more water in the apoplast. p-coumaric acid is the hydroxyl derivative of cinnamic acid and a precursor for lignin and flavonoids in higher plant. In the present study, we examined the role of lignin in the development of HH in Arabidopsis thaliana by checking the wild-types (Ler and Col-0) and mutants affected in phenylpropanoid biosynthesis, in the gene coding for cinnamate 4-hydroxylase, C4H (ref3-1 and ref3-3). Exogenously applied p-coumaric acid decreased the symptoms of HH in both wild-type and less-lignin mutants. Moreover, the results revealed that exogenously applied p-coumaric acid inhibited root growth and increased the total lignin content in both wild-type and less-lignin mutants. These effects appeared to diminish the symptoms of HH and suggest an important role for lignin in HH.
  8. Radziff SBM, Ahmad SA, Shaharuddin NA, Merican F, Kok YY, Zulkharnain A, et al.
    Plants (Basel), 2021 Dec 06;10(12).
    PMID: 34961148 DOI: 10.3390/plants10122677
    One of the most severe environmental issues affecting the sustainable growth of human society is water pollution. Phenolic compounds are toxic, hazardous and carcinogenic to humans and animals even at low concentrations. Thus, it is compulsory to remove the compounds from polluted wastewater before being discharged into the ecosystem. Biotechnology has been coping with environmental problems using a broad spectrum of microorganisms and biocatalysts to establish innovative techniques for biodegradation. Biological treatment is preferable as it is cost-effective in removing organic pollutants, including phenol. The advantages and the enzymes involved in the metabolic degradation of phenol render the efficiency of microalgae in the degradation process. The focus of this review is to explore the trends in publication (within the year of 2000-2020) through bibliometric analysis and the mechanisms involved in algae phenol degradation. Current studies and publications on the use of algae in bioremediation have been observed to expand due to environmental problems and the versatility of microalgae. VOSviewer and SciMAT software were used in this review to further analyse the links and interaction of the selected keywords. It was noted that publication is advancing, with China, Spain and the United States dominating the studies with total publications of 36, 28 and 22, respectively. Hence, this review will provide an insight into the trends and potential use of algae in degradation.
  9. Nipun TS, Khatib A, Ahmed QU, Nasir MHM, Supandi F, Taher M, et al.
    Plants (Basel), 2021 Dec 07;10(12).
    PMID: 34961160 DOI: 10.3390/plants10122688
    Psychotria malayana Jack belongs to the Rubiacea and is widespread in Southeast Asian countries. It is traditionally used to treat diabetes. Despite its potential medicinal use, scientific proof of this pharmacological action and the toxic effect of this plant are still lacking. Hence, this study aimed to investigate the in vitro antidiabetic and antioxidant activities, toxicity, and preliminary phytochemical screening of P. malayana leaf extracts by gas chromatography-mass spectrometry (GC-MS) after derivatization. The antidiabetic activities of different extracts of this plant were investigated through alpha-glucosidase inhibitory (AGI) and 2-NBDG glucose uptake using 3T3-L1 cell line assays, while the antioxidant activity was evaluated using DPPH and FRAP assays. Its toxicological effect was investigated using the zebrafish embryo/larvae (Danio rerio) model. The mortality, hatchability, tail-detachment, yolk size, eye size, beat per minute (BPM), and body length were taken into account to observe the teratogenicity in all zebrafish embryos exposed to methanol extract. The LC50 was determined using probit analysis. The methanol extract showed the AGI activity (IC50 = 2.71 ± 0.11 μg/mL), insulin-sensitizing activity (at a concentration of 5 µg/mL), and potent antioxidant activities (IC50 = 10.85 μg/mL and 72.53 mg AAE/g for DPPH and FRAP activity, respectively). Similarly, the water extract exhibited AGI activity (IC50 = 6.75 μg/mL), insulin-sensitizing activity at the concentration of 10 μg/mL, and antioxidant activities (IC50 = 27.12 and 33.71 μg/mL for DPPH and FRAP activity, respectively). The methanol and water extracts exhibited the LC50 value higher than their therapeutic concentration, i.e., 37.50 and 252.45 µg/mL, respectively. These results indicate that both water and methanol extracts are safe and potentially an antidiabetic agent, but the former is preferable since its therapeutic index (LC50/therapeutic concentration) is much higher than for methanol extracts. Analysis using GC-MS on derivatized methanol and water extracts of P. malayana leaves detected partial information on some constituents including palmitic acid, 1,3,5-benzenetriol, 1-monopalmitin, beta-tocopherol, 24-epicampesterol, alpha-tocopherol, and stigmast-5-ene, that could be a potential target to further investigate the antidiabetic properties of the plant. Nevertheless, isolation and identification of the bioactive compounds are required to confirm their antidiabetic activity and toxicity.
  10. Murugesu S, Selamat J, Perumal V
    Plants (Basel), 2021 Dec 14;10(12).
    PMID: 34961220 DOI: 10.3390/plants10122749
    Ficus is one of the largest genera in the plant kingdom that belongs to the Moraceae family. This review aimed to summarize the medicinal uses, phytochemistry, and pharmacological actions of two major species from this genus, namely Ficus benghalensis and Ficus religiosa. These species can be found abundantly in most Asian countries, including Malaysia. The chemical analysis report has shown that Ficus species contained a wide range of phytoconstituents, including phenols, flavonoids, alkaloids, tannins, saponins, terpenoids, glycosides, sugar, protein, essential and volatile oils, and steroids. Existing studies on the pharmacological functions have revealed that the observed Ficus species possessed a broad range of biological properties, including antioxidants, antidiabetic, anti-inflammatory, anticancer, antitumor and antiproliferative, antimutagenic, antimicrobial, anti-helminthic, hepatoprotective, wound healing, anticoagulant, immunomodulatory activities, antistress, toxicity studies, and mosquitocidal effects. Apart from the plant parts and their extracts, the endophytes residing in these host plants were discussed as well. This study also includes the recent applications of the Ficus species and their plant parts, mainly in the nanotechnology field. Various search engines and databases were used to obtain the scientific findings, including Google Scholar, ScienceDirect, PMC, Research Gate, and Scopus. Overall, the review discusses the therapeutic potentials discovered in recent times and highlights the research gaps for prospective research work.
  11. Khalifa M, Few LL, Too WCS
    Mini Rev Med Chem, 2021 Dec 13.
    PMID: 34961459 DOI: 10.2174/1389557521666211213160256
    BACKGROUND: Pseudomonas aeruginosa is one of the most prevalent opportunistic pathogens in humans that has thrived and proved to be difficult to control in this "post-antibiotic era." Antibiotic alternatives are necessary for fighting against this resilient bacterium. Even though phages might not be "the wonder drug" that solves everything, they still provide a viable option to combat P. aeruginosa and curb the threat it imposes.

    MAIN FINDINGS: The combination of antibiotics with phages, however, poses a propitious treatment option for P. aeruginosa. Choline kinase (ChoK) is the enzyme that synthesizes phosphorylcholine subsequently incorporated into lipopolysaccharide located at the outer membrane of gram-negative bacteria. Recently, inhibition of ChoKs has been proposed as a promising antibacterial strategy. Successful docking of Hemicholinium-3, a choline kinase inhibitor, to the model structure of P. aeruginosa ChoK also supports the use of this inhibitor or its derivatives to inhibit the growth of this microorganism.

    CONCLUSION: Therefore, the combination of the novel antimicrobial "choline kinase inhibitors (ChoKIs)" with a phage cocktail or synthetic phages as a potential treatment for P. aeruginosa infection has been proposed.

  12. Iqbal A, Rutter V, Gülpınar G, Halai M, Awele B, Elshenawy RA, et al.
    J Pharm Policy Pract, 2021 Dec 27;14(1):112.
    PMID: 34961548 DOI: 10.1186/s40545-021-00396-7
    BACKGROUND: The Commonwealth Pharmacists Association (CPA) is a charity representing pharmacists across the Commonwealth, with the vision of empowering and collaboratively develop the profession and fully utilise the potential of pharmacists to strengthen health systems through supporting better access to, quality and use of medicines and related services. Commonwealth comprises predominantly of low- and middle-income countries, where limited data often exists in pharmacy practice. There is a recognised need across the Commonwealth to focus on developing, implementing and fully utilising pharmacy professional services to progress universal health coverage and achieve the sustainable development goals, particularly in low and middle-income countries; however, currently a knowledge gap exists in understanding the national priorities in Commonwealth nations. CPA is ideally positioned to access to these nations. The aim of this study was thus to explore the priorities and focus areas of NPAs across the Commonwealth and create evidence for a needs-based approach to inform the support that the Commonwealth pharmacists association can collaboratively and strategically provide to its members to progress towards shared goals.

    METHODS: Data were collected virtually on Zoom by conducting interviews using a semi-structured interview guide developed for this study with CPA councillors representing NPAs or their equivalents if no official body existed. An inductive, reflexive, thematic analysis was performed for data analysis.

    RESULTS: In total, 30 councillors were interviewed from 30 low- and medium-income countries. The three main overarching priority areas identified across respective Commonwealth nations developing extended pharmacy services, improving pharmacy education, and developing and redefining the role of NPAs.

    CONCLUSIONS: This novel study highlights the collective priorities for the pharmacy profession across the low and middle-income countries of the Commonwealth and the urgent need for supporting NPAs around the three identified overarching priority areas. The mapped-out priorities will inform an evidence-based approach for the CPA to better support NPAs in their mission through advocacy and practitioner development, to fully harness pharmacists' unique skill set and maximise their contribution to progressing universal health coverage.

  13. Foo SK, Cubbidge RP, Heitmar R
    PMID: 34962591 DOI: 10.1007/s00417-021-05430-7
    PURPOSE: The aims of this paper were to examine focal and diffuse visual field loss in terms of threshold agreement between the widely used SITA Standard Humphrey Field Analyser (HFA) threshold algorithm with the SPARK Precision algorithm (Oculus Twinfield 2).

    METHODS: A total of 39 treated glaucoma patients (34 primary open angle and 5 primary angle closure glaucoma) and 31 cataract patients without glaucoma were tested in succession with the Oculus Twinfield 2 (Oculus Optikgeräte GmbH, Wetzlar, Germany) using the SPARK Precision algorithm and with the HFA 3 (Carl Zeiss Meditec, Dublin, CA) using the 30-2 SITA Standard algorithm.

    RESULTS: SPARK Precision required around half the testing time of SITA Standard. There was a good correlation between the MS of the two threshold algorithms but MD and PSD were significantly less severe with SPARK Precision in both glaucoma (focal field loss) and cataract (diffuse field loss) groups (p 

  14. Zaki NM, Schwarzacher T, Singh R, Madon M, Wischmeyer C, Hanim Mohd Nor N, et al.
    Chromosome Res, 2021 12;29(3-4):373-390.
    PMID: 34657216 DOI: 10.1007/s10577-021-09675-0
    Chromosome identification is essential for linking sequence and chromosomal maps, verifying sequence assemblies, showing structural variations and tracking inheritance or recombination of chromosomes and chromosomal segments during evolution and breeding programs. Unfortunately, identification of individual chromosomes and chromosome arms has been a major challenge for some economically important crop species with a near-continuous chromosome size range and similar morphology. Here, we developed oligonucleotide-based chromosome-specific probes that enabled us to establish a reference chromosome identification system for oil palm (Elaeis guineensis Jacq., 2n = 32). Massive oligonucleotide sequence pools were anchored to individual chromosome arms using dual and triple fluorescent in situ hybridization (EgOligoFISH). Three fluorescently tagged probe libraries were developed to contain, in total 52,506 gene-rich single-copy 47-mer oligonucleotides spanning each 0.2-0.5 Mb across strategically placed chromosome regions. They generated 19 distinct FISH signals and together with rDNA probes enabled identification of all 32 E. guineensis chromosome arms. The probes were able to identify individual homoeologous chromosome regions in the related Arecaceae palm species: American oil palm (Elaeis oleifera), date palm (Phoenix dactylifera) and coconut (Cocos nucifera) showing the comparative organization and concerted evolution of genomes in the Arecaceae. The oligonucleotide probes developed here provide a valuable approach to chromosome arm identification and allow tracking chromosome transfer in hybridization and breeding programs in oil palm, as well as comparative studies within Arecaceae.
    MeSH terms: Chromosomes; Hybridization, Genetic; Oligonucleotides; In Situ Hybridization, Fluorescence
  15. Mohammad Ilias MK, Hossain MS, Ngteni R, Al-Gheethi A, Ahmad H, Omar FM, et al.
    PMID: 34886153 DOI: 10.3390/ijerph182312427
    The present study was conducted to determine the potential of utilizing the FeSO4·7H2O waste from the titanium manufacturing industry as an effective coagulant for treating industrial effluent. In this study, the secondary rubber processing effluent (SRPE) was treated using ferrous sulfate (FeSO4·7H2O) waste from the titanium oxide manufacturing industry. The FeSO4·7H2O waste coagulation efficiency was evaluated on the elimination of ammoniacal nitrogen (NH3-N) and chemical oxygen demand (COD) from SRPE. The central composite design (CCD) of experiments was employed to design the coagulation experiments with varying coagulation time, coagulant doses, and temperature. The coagulation experiments were optimized on the optimal elimination of NH3-N and COD using response surface methodology (RSM). Results showed that coagulant doses and temperature significantly influenced NH3-N and COD elimination from SRPE. The highest NH3-N and COD removal obtained were 98.19% and 93.86%, respectively, at the optimized coagulation experimental conditions of coagulation time 70 min, coagulant doses 900 mg/L, and temperature 62 °C. The residual NH3-N and COD in treated SPRE were found below the specified industrial effluent discharge limits set by DoE, Malaysia. Additionally, the sludge generated after coagulation of SRPE contains essential plant nutrients. The present study's finding showed that FeSO4·7H2O waste generated as an industrial byproduct in a titanium oxide manufacturing industry could be utilized as an eco-friendly coagulant in treating industrial effluent.
    MeSH terms: Ferrous Compounds; Industrial Waste/analysis; Rubber; Waste Disposal, Fluid; Water Pollutants, Chemical*; Environmental Restoration and Remediation*; Biological Oxygen Demand Analysis
  16. Ooi TC, Ishak WS, Sharif R, Shahar S, Rajab NF, Singh DKA, et al.
    Clin Interv Aging, 2021;16:2033-2046.
    PMID: 34949916 DOI: 10.2147/CIA.S340432
    Purpose: This study evaluates the prevalence of and the multidimensional risk factors associated with age-related hearing loss (ARHL) among community-dwelling older adults in Malaysia.

    Patients and Methods: A total of 253 participants aged 60 years and above participated in this cross-sectional study. The participants were subjected to pure tone audiometric assessment. The hearing threshold was calculated for the better ear and classified into pure-tone average (PTA) for the octave frequencies from 0.5 to 4 kHz and high-frequency pure-tone average (HFA) for the octave from 2 to 8kHz. Then, the risk factors associated with PTA hearing loss (HL) and HFAHL were identified by using multivariate logistic regression analysis.

    Results: The prevalence of ARHL based on PTA and HFA among the community-dwelling older adults was 75.5% and 83.0%, respectively. Following multifactorial adjustments, being older (OR: 1.239; 95% CI: 1.062-1.445), having higher waist circumference (OR: 1.158; 95% CI: 1.015-1.322), lower intake of niacin (OR: 0.909; 95% CI: 0.831-0.988) and potassium (OR: 0.998; 95% CI: 0.996-1.000), and scoring lower in RAVLT T5 (OR: 0.905; 95% CI: 0.838-0.978) were identified as the risk factors of PTAHL. Meanwhile, being older (OR: 1.117; 95% CI: 1.003-1.244), higher intake of carbohydrate (OR: 1.018; 95% CI: 1.006-1.030), lower intake of potassium (OR: 0.998; 95% CI: 0.997-0.999), and lower scores on the RAVLT T5 (OR: 0.922; 95% CI: 0.874-0.973) were associated with increased risk of having HFAHL.

    Conclusion: Increasing age, having higher waist circumference, lower intake of niacin and potassium, higher intake of carbohydrates and having lower RAVLT T5 score were associated with increased risk of ARHL. Modifying these risk factors may be beneficial in preventive and management strategies of ARHL among older persons.

    MeSH terms: Aged; Aged, 80 and over; Audiometry, Pure-Tone; Cross-Sectional Studies; Humans; Presbycusis*; Risk Factors; Independent Living*
  17. Markby J, Shilton S, Sem X, Chan HK, Md Said R, Siva S, et al.
    BMJ Open, 2021 Dec 24;11(12):e055142.
    PMID: 34952885 DOI: 10.1136/bmjopen-2021-055142
    INTRODUCTION: To achieve the elimination of hepatitis C virus (HCV), substantial scale-up in access to testing and treatment is needed. This will require innovation and simplification of the care pathway, through decentralisation of testing and treatment to primary care settings and task-shifting to non-specialists. The objective of this study was to evaluate the feasibility and effectiveness of decentralisation of HCV testing and treatment using rapid diagnostic tests (RDTs) in primary healthcare clinics (PHCs) among high-risk populations, with referral of seropositive patients for confirmatory viral load testing and treatment.

    METHODS: This observational study was conducted between December 2018 and October 2019 at 25 PHCs in three regions in Malaysia. Each PHC was linked to one or more hospitals, for referral of seropositive participants for confirmatory testing and pretreatment evaluation. Treatment was provided in PHCs for non-cirrhotic patients and at hospitals for cirrhotic patients.

    RESULTS: During the study period, a total of 15 366 adults were screened at the 25 PHCs, using RDTs for HCV antibodies. Of the 2020 (13.2%) HCV antibody-positive participants, 1481/2020 (73.3%) had a confirmatory viral load test, 1241/1481 (83.8%) were HCV RNA-positive, 991/1241 (79.9%) completed pretreatment assessment, 632/991 (63.8%) initiated treatment, 518/632 (82.0%) completed treatment, 352/518 (68.0%) were eligible for a sustained virological response (SVR) cure assessment, 209/352 (59.4%) had an SVR cure assessment, and SVR was achieved in 202/209 (96.7%) patients. A significantly higher proportion of patients referred to PHCs initiated treatment compared with those who had treatment initiated at hospitals (71.0% vs 48.8%, p<0.001).

    CONCLUSIONS: This study demonstrated the effectiveness and feasibility of a simplified decentralised HCV testing and treatment model in primary healthcare settings, targeting high-risk groups in Malaysia. There were good outcomes across most steps of the cascade of care when treatment was provided at PHCs compared with hospitals.

  18. Chiew LY, Hackett TD, Brodie JF, Teoh SW, Burslem DFRP, Reynolds G, et al.
    J Anim Ecol, 2021 Dec 25.
    PMID: 34954816 DOI: 10.1111/1365-2656.13655
    Conservation outcomes could be greatly enhanced if strategies addressing anthropogenic land-use change considered the impacts of these changes on entire communities as well as on individual species. Examining how species interactions change across gradients of habitat disturbance allows us to predict the cascading consequences of species extinctions and the response of ecological networks to environmental change. We conducted the first detailed study of changes in a commensalist network of mammals and dung beetles across an environmental disturbance gradient, from primary tropical forest to plantations, which varied in above-ground carbon density (ACD) and mammal communities. Mammal diversity changed only slightly across the gradient, remaining high even in oil palm plantations and fragmented forest. Dung beetle species richness, however, declined in response to lower ACD and was particularly low in plantations and the most disturbed forest sites. Three of the five network metrics (nestedness, network specialization and functionality) were significantly affected by changes in dung beetle species richness and ACD, but mammal diversity was not an important predictor of network structure. Overall, the interaction networks remained structurally and functionally similar across the gradient, only becoming simplified (i.e. with fewer dung beetle species and fewer interactions) in the most disturbed sites. We suggest that the high diversity of mammals, even in disturbed forests, combined with the generalist feeding patterns of dung beetles, confer resilience to the commensalist dung beetle-mammal networks. This study highlights the importance of protecting logged and fragmented forests to maintain interaction networks and potentially prevent extinction cascades in human-modified systems.
  19. Soon Seng T, Dorasamy M, Razak R, Kaliannan M, Sambasivan M
    F1000Res, 2021;10:1040.
    PMID: 34950455 DOI: 10.12688/f1000research.70646.3
    The interactivity and ubiquity of digital technologies are exerting a significant impact on the knowledge creation in information technology (KC-IT) projects. According to the literature, the critical relevance of KC-IT is highly associated with digital innovation (DI) for organisational success. However, DI is not yet a fully-fledged research subject but is an evolving corpus of theory and practise that draws from a variety of social science fields. Given the preceding setting, this study explores the interaction of KC-IT with DI. This work provides a systemic literature review (SLR) to examine the literature in KC-IT and its connection to DI. A SLR of 527 papers from 2001 to 2021 was performed across six online databases. The review encompasses quantitative and qualitative studies on KC-IT factors, processes and methods. Three major gaps were found in the SLR. Firstly, only 57 (0.23%) papers were found to examine the association between KC and IT projects. These works were analysed for theories, type of papers, KC-IT factors, processes and methods. Secondly, the convergence reviews indicate that scarce research has examined TMS and trust in KC-IT as factors. Thirdly, only 0.02% (5) core papers appeared in the search relevant to KC in IT projects to accelerate DI. The majority of the papers examined were not linked to DI. A significant gap also exists in these areas. These findings warrant the attention of the research community.
    MeSH terms: Qualitative Research*
  20. Lee YW, Dorasamy M, Bin Ahmad AA, Jambulingam M, Yeap PF, Harun S
    F1000Res, 2021;10:1056.
    PMID: 34950456 DOI: 10.12688/f1000research.73342.2
    Background: Higher education institutions (HEI) are not spared from the coronavirus disease 2019 (COVID-19) pandemic. The closure of campuses because of the movement control order (MCO) to mitigate the spread of the COVID-19 has forced HEIs to adopt online learning, especially synchronous online learning (SOL). Although teaching and learning can be continued via SOL, retaining students' interest and sustaining their engagement have not been sufficiently explored. This study presents a systematic review of the research pertaining to SOL associated with students' interest and engagement in HEIs during the MCO environment. Methods: Five major online databases, i.e., EBSCOhost, Science Direct, Emerald, Scopus and Springer were searched to collect relevant papers published between 1st January 2010 to 15th June 2021 including conference proceedings, peer-reviewed papers and dissertations. Papers written in the English language, based in full-fledged universities, and with these five keywords: (i) synchronous online learning, (ii) engagement, (iii) interest, (iv) MCO/Covid-19 and (v) HEI, were included. Papers focussing on synchronous and asynchronous online learning in schools and colleges were excluded. Each paper was reviewed by two reviewers in order to confirm the eligibility based on the inclusion and exclusion criteria. Results: We found 31 papers of which six papers were related to SOL, engagement and interest in HEIs in the MCO environment. Our review presents three major findings: (i) limited research has been conducted on SOL associated with students' engagement and interest, (ii) studies related to the context of HEIs in the MCO environment are limited, and (iii) the understanding of the new phenomena through qualitative research is insufficient. We highlight the SOL alignment with students' engagement, interest, style preference, learner interaction effectiveness, behavior and academic performance. Conclusions: We believe that the findings of this study are timely and require attention from the research community.
    MeSH terms: Humans; Schools; Universities; Education, Distance*
External Links