Affiliations 

  • 1 School of Pharmacy, Jinan University, Guangzhou 510632, Guangdong, China; Post-Doctoral Innovation Base, Jinan University Affiliation, Yuanzhi Health Technology Co, Ltd, Hengqin New District, Zhuhai, Guangdong 51900, China. Electronic address: dfwang@jnu.edu.cn
  • 2 School of Pharmacy, Jinan University, Guangzhou 510632, Guangdong, China; Post-Doctoral Innovation Base, Jinan University Affiliation, Yuanzhi Health Technology Co, Ltd, Hengqin New District, Zhuhai, Guangdong 51900, China
  • 3 School of Pharmacy, Jinan University, Guangzhou 510632, Guangdong, China
  • 4 Post-Doctoral Innovation Base, Jinan University Affiliation, Yuanzhi Health Technology Co, Ltd, Hengqin New District, Zhuhai, Guangdong 51900, China
  • 5 Post-Doctoral Innovation Base, Jinan University Affiliation, Yuanzhi Health Technology Co, Ltd, Hengqin New District, Zhuhai, Guangdong 51900, China; Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia
Life Sci, 2022 Mar 15;293:120336.
PMID: 35065166 DOI: 10.1016/j.lfs.2022.120336

Abstract

AIMS: Individuals with nonalcoholic hepatosteatosis (NAFLD) have a worse atherogenic lipoprotein profile and are susceptible to cardiovascular diseases. The MEK-ERK signaling cascades are central regulators of the levels of LDL receptor (LDLR), a major determinant of circulating cholesterol. It is elusive how hepatic steatosis contributes to dyslipidemia, especially hypercholesterolemia.

MAIN METHODS: The effects of BChE on signaling pathways were determined by immunoblotting in a BChE knockout hepatocyte cell line. DiI-LDL probe was used to explore the effect of BChE expression on LDL internalization. Co-immunoprecipitation and LC-MS were used to explore the interacting proteins with BChE. Finally, a hepatocyte-restricted BChE silencing mouse model was established by AAV8-Tbg-shRNA, and the hypercholesterolemia was induced by 65% kcal% high-fat, high-sucrose diet feeding.

MAIN FINDINGS: Here we demonstrate that butyrylcholinesterase (BChE) governs the LDL receptor levels and LDL uptake capacity through the MEK-ERK signaling cascades to promote Ldlr transcription. BChE interacts and co-localizes with PRMT5, a protein methylation modifier controlling the ERK signaling. PRMT5 regulates LDLR-dependent LDL uptake and is a substrate of chaperone-mediated autophagy (CMA). BChE deficiency induces the PRTM5 degradation dependent on CMA activity, possibly through facilitating the HSC70 (Heat shock cognate 71 kDa) recognition of PRMT5. Remarkably, in vivo hepatocyte-restricted BChE silencing reduces plasma cholesterol levels substantially. In contrast, the BChE knockout mice are predisposed to hypercholesterolemia.

SIGNIFICANCE: Taken together, these findings outline a regulatory role for the BChE-PRMT5-ERK-LDLR axis in hepatocyte cholesterol metabolism, and suggest that targeting liver BChE is an effective therapeutic strategy to treat hypercholesterolemia.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.