Affiliations 

  • 1 Department of Mechanical Engineering, De La Salle University, 2401 Taft Avenue, 0922 Manila, Philippines; Center for Engineering Sustainable Development Research, De La Salle University, 2401 Taft Avenue, 0922 Manila, Philippines. Electronic address: alvin.culaba@dlsu.edu.ph
  • 2 Center for Engineering Sustainable Development Research, De La Salle University, 2401 Taft Avenue, 0922 Manila, Philippines; Department of Manufacturing Engineering and Management, De La Salle University, 2401 Taft Avenue, 0922 Manila, Philippines
  • 3 Center for Engineering Sustainable Development Research, De La Salle University, 2401 Taft Avenue, 0922 Manila, Philippines; Department of Industrial and Systems Engineering, De La Salle University, 2401 Taft Avenue, 0922 Manila, Philippines
  • 4 Department of Mechanical Engineering, De La Salle University, 2401 Taft Avenue, 0922 Manila, Philippines; Center for Engineering Sustainable Development Research, De La Salle University, 2401 Taft Avenue, 0922 Manila, Philippines; Thermomechanical Analysis Laboratory, De La Salle University, Laguna Campus, LTI Spine Road, Laguna Blvd., Binan, Laguna 4024, Philippines
  • 5 Center for Engineering Sustainable Development Research, De La Salle University, 2401 Taft Avenue, 0922 Manila, Philippines; Department of Electronics and Computer Engineering, De La Salle University, 2401 Taft Avenue, 0922 Manila, Philippines
  • 6 Department of Electronics and Computer Engineering, De La Salle University, 2401 Taft Avenue, 0922 Manila, Philippines
  • 7 Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan 701, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan; Department of Mechanical Engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan
  • 8 Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China; Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai 602105, India; Department of Chemical and Environmental Engineering, University of Nottingham, Malaysia, 43500 Semenyih, Selangor Darul Ehsan, Malaysia
  • 9 Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan; Department of Chemical and Materials Engineering, Tunghai University, Taichung 407, Taiwan; Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan
Bioresour Technol, 2023 Feb;369:128256.
PMID: 36343780 DOI: 10.1016/j.biortech.2022.128256

Abstract

The increase in worldwide demand for energy is driven by the rapid increase in population and exponential economic development. This resulted in the fast depletion of fossil fuel supplies and unprecedented levels of greenhouse gas in the atmosphere. To valorize biomass into different bioproducts, one of the popular and carbon-neutral alternatives is biorefineries. This system is an appropriate technology in the circular economy model. Various research highlighted the role of biorefineries as a centerpiece in the carbon-neutral ecosystem of technologies of the circular economy model. To fully realize this, various improvements and challenges need to be addressed. This paper presents a critical and timely review of the challenges and future direction of biorefineries as an alternative carbon-neutral energy source.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.