The postsynthetic modification of metal-organic frameworks (MOFs) has opened up a promising area to widen their water treatment application. However, their polycrystalline powdery state still restricts their widespread industrial-scale applications. Herein, the magnetization of UiO-66-NH2 is reported as a promising approach to facilitate the separation of the used MOFs after water treatment. A two-step postmodification procedure employing 2,4,6-trichloro-1,3,5-triazine (TCT) and 5-phenyl-1H-tetrazole (PTZ) agents was introduced to level up the adsorption performance of the magnetic nanocomposite. Despite a decrement in porosity and specific surface area of the designed MOFs (m-UiO-66-TCT) compared to neat UiO-66-NH2, it outweighs in adsorption capacity. It was observed that m-UiO-66-TCT has an adsorption capacity of ≈298 mg/g for methyl orange (MO) with facile MOF separation using an external magnet. Pseudo-second-order kinetic model and Freundlich isotherm models suitably interpret the experimental data. Thermodynamic studies showed that MO removal using m-UiO-66-TCT is spontaneous and thermodynamically favorable at higher temperatures. The m-UiO-66-TCT composite exhibited easy separation, high adsorption capacity, and good recyclability, rendering it an attractive candidate for the adsorptive removal of MO dye from aqueous environments.
* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.