Affiliations 

  • 1 Department of Chemical Engineering, University of Science and Technology of Mazandaran, P.O. Box 48518-78195, Behshahr, Iran. Electronic address: sasan_zahmatkesh@yahoo.com
  • 2 Sustainable Process Integration Laboratory, SPIL, NETME Centre, Faculty of Mechanical Engineering, Brno University of Technology, VUT Brno, Technická 2896/2, 616 00, Brno, Czech Republic
  • 3 Sustainable Process Integration Laboratory, SPIL, NETME Centre, Faculty of Mechanical Engineering, Brno University of Technology, VUT Brno, Technická 2896/2, 616 00, Brno, Czech Republic; Chemical Engineering Department, COMSATS University Islamabad (CUI), Lahore Campus, Lahore, Punjab, 54000, Pakistan. Electronic address: bokhari@fme.vutbr.cz
  • 4 School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, China
  • 5 Faculty of Science and Technology, School of Applied Physics, University Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia; International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan, 173212, Himachal Pradesh, India; Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P. O. Box 17011, Doornfontein, 2028, South Africa
  • 6 College of Engineering, Department of Chemical Engineering, King Khalid University, Abha, 61411, Saudi Arabia
  • 7 Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan; The International University of Management, Centre for Environmental Studies, Main Campus, Dorado Park Ext 1, Windhoek, Namibia
Chemosphere, 2022 Oct;305:135247.
PMID: 35688196 DOI: 10.1016/j.chemosphere.2022.135247

Abstract

The significant issue affecting wastewater treatment is human faeces containing SARS-CoV-2. SARS-CoV-2, as a novel coronavirus, has expanded globally. While the current focus on the COVID-19 epidemic is rightly on preventing direct transmission, the risk of secondary transmission via wastewater should not be overlooked. Many researchers have demonstrated various methods and tools for preventing and declining this virus in wastewater treatment, especially for SARS-CoV-2 in human faeces. This research reports two people tested for 30 d, with written consent, at Mosa-Ebne-Jafar Hospital of Quchan, Iran, from September 1st to October 9th, 2021. The two people's conditions are the same. The Hyssop plant was used, which boosts the immune system's effectiveness and limonene, rosemary, caffeic acids and flavonoids, all biologically active compounds in this plant, cause improved breathing problems, colds, and especially for SARS-CoV-2. As a result, utilising the Hyssop plant can help in reducing SARS-CoV-2 in faeces. This plant's antioxidant properties effectively reduce SARS-CoV-2 in faeces by 30%; nevertheless, depending on the patient's condition. This plant is also beneficial for respiratory and digestive health.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.