Advanced wastewater treatment technologies are effective methods and currently attract growing attention, especially in arid and semi-arid areas, for reusing water, reducing water pollution, and explicitly declining, inactivating, or removing SARS-CoV-2. Overall, removing organic matter and micropollutants prior to wastewater reuse is critical, considering that water reclamation can help provide a crop irrigation system and domestic purified water. Advanced wastewater treatment processes are highly recommended for contaminants such as monovalent ions from an abiotic source and SARS-CoV-2 from an abiotic source. This work introduces the fundamental knowledge of various methods in advanced water treatment, including membranes, filtration, Ultraviolet (UV) irradiation, ozonation, chlorination, advanced oxidation processes, activated carbon (AC), and algae. Following that, an analysis of each process for organic matter removal and mitigation or prevention of SARS-CoV-2 contamination is discussed. Next, a comprehensive overview of recent advances and breakthroughs is provided for each technology. Finally, the advantages and disadvantages of each method are discussed.
Microplastics (MPs) and SARS-CoV-2 interact due to their widespread presence in our environment and affect the virus' behaviour indoors and outdoors. Therefore, it is necessary to study the interaction between MPs and SARS-CoV-2. The environmental damage caused by MPs is increasing globally. Emerging pollutants may adversely affect organisms, especially sewage, posing a threat to human health, animal health, and the ecological system. A significant concern with MPs in the air is that they are a vital component of MPs in the other environmental compartments, such as water and soil, which may affect human health through ingesting or inhaling. This work introduces the fundamental knowledge of various methods in advanced water treatment, including membrane bioreactors, advanced oxidation processes, adsorption, etc., are highly effective in removing MPs; they can still serve as an entrance route due to their constantly being discharged into aquatic environments. Following that, an analysis of each process for MPs' removal and mitigation or prevention of SARS-CoV-2 contamination is discussed. Next, an airborne microplastic has been reported in urban areas, raising health concerns since aerosols are considered a possible route of SARS-CoV-2 disease transmission and bind to airborne MP surfaces. The MPs can be removed from wastewater through conventional treatment processes with physical processes such as screening, grit chambers, and pre-sedimentation.
The significant issue affecting wastewater treatment is human faeces containing SARS-CoV-2. SARS-CoV-2, as a novel coronavirus, has expanded globally. While the current focus on the COVID-19 epidemic is rightly on preventing direct transmission, the risk of secondary transmission via wastewater should not be overlooked. Many researchers have demonstrated various methods and tools for preventing and declining this virus in wastewater treatment, especially for SARS-CoV-2 in human faeces. This research reports two people tested for 30 d, with written consent, at Mosa-Ebne-Jafar Hospital of Quchan, Iran, from September 1st to October 9th, 2021. The two people's conditions are the same. The Hyssop plant was used, which boosts the immune system's effectiveness and limonene, rosemary, caffeic acids and flavonoids, all biologically active compounds in this plant, cause improved breathing problems, colds, and especially for SARS-CoV-2. As a result, utilising the Hyssop plant can help in reducing SARS-CoV-2 in faeces. This plant's antioxidant properties effectively reduce SARS-CoV-2 in faeces by 30%; nevertheless, depending on the patient's condition. This plant is also beneficial for respiratory and digestive health.
Microplastics (MPs) have become a prevalent environmental concern, exerting detrimental effects on marine and terrestrial ecosystems, as well as human health. Addressing this urgent issue necessitates the implementation of coordinated waste management policies and strategies. In this study, we present a comprehensive review focusing on key results and the underlying mechanisms associated with microplastics. We examine their sources and pathways, elucidate their ecological and human health impacts, and evaluate the current state of waste management policies. By drawing upon recent research and pertinent case studies, we propose a range of practical solutions, encompassing enhanced recycling and waste reduction measures, product redesign, and innovative technological interventions. Moreover, we emphasize the imperative for collaboration and cooperation across sectors and jurisdictions to effectively tackle this pressing environmental challenge. The findings of this study contribute to the broader understanding of microplastics and provide valuable insights for policymakers, researchers, and stakeholders alike.
The prevalence of organic solid waste worldwide has turned into a problem that requires comprehensive treatment on all fronts. The amount of agricultural waste generated by agro-based industries has more than triplet. It not only pollutes the environment but also wastes a lot of beneficial biomass resources. These wastes may be utilized as a different option/source for the manufacturing of many goods, including biogas, biofertilizers, biofuel, mushrooms and tempeh as the primary ingredients in numerous industries. Utilizing agro-industrial wastes as good raw materials may provide cost reduction and lower environmental pollution levels. Agro-industrial wastes are converted into biofuels, enzymes, vitamin supplements, antioxidants, livestock feed, antibiotics, biofertilizers and other compounds via solid-state fermentation (SSF). By definition, SSF is a method used when there is little to no free water available. As a result, it permits the use of solid materials as biotransformation substrates. Through SSF methods, a variety of microorganisms are employed to produce these worthwhile things. SSFs are therefore reviewed and discussed along with their impact on the production of value-added items. This review will provide thorough essential details information on recycling and the use of agricultural waste.
There are several environmental and human health impacts if human hair waste is not adequately disposed of. In this study, pyrolysis of discarded human hair was carried out. This research focused on the pyrolysis of discarded human hair under controlled environmental conditions. The effects of the mass of discarded human hair and temperature on bio-oil yield were studied. The proximate and ultimate analyses and calorific values of disposed of human hair, bio-oil, and biochar were determined. Further, chemical compounds of bio-oil were analyzed using a gas chromatograph and a mass spectrometer. Finally, the kinetic modeling and behavior of the pyrolysis process were characterized through FT-IR spectroscopy and thermal analysis. Based on the optimized mass of disposed of human hair, 250 g had a better bio-oil yield of 97% in the temperature range of 210-300 °C. The different parameters of bio-oil were: pH (2.87), specific gravity (1.17), moisture content (19%), heating value (19.34 MJ/kg), and viscosity (50 CP). C (56.4%), H (6.1%), N (0.16%), S (0.01%), O (38.4%), and Ash (0.1%) were discovered to be the elemental chemical composition of bio-oil (on a dry basis). During breakdown, the release of different compounds like hydrocarbons, aldehydes, ketones, acids, and alcohols takes place. According to the GC-MS results, several amino acids were discovered in the bio-oil, 12 abundant in the discarded human hair. The FTIR and thermal analysis found different concluding temperatures and wave numbers for functional groups. Two main stages are partially separated at about 305 °C, with maximum degradation rates at about 293 oC and 400-4140 °C, respectively. The mass loss was 30% at 293 0C and 82% at temperatures above 293 0C. When the temperature reached 4100C, the entire bio-oil from discarded human hair was distilled or thermally decomposed.