Affiliations 

  • 1 Universiti Kuala Lumpur, Branch Campus Institute of Medical Science Technology, A1, 1, Jalan TKS 1, Taman Kajang Sentral, 43000, Kajang, Selangor, Malaysia; Universiti Kuala Lumpur, Branch Campus Malaysian Institute of Chemical and Bioengineering Technology, Lot 1988 Kawasan Perindustrian Bandar Vendor, Taboh Naning, Alor Gajah, Melaka, Malaysia. Electronic address: wytong@unikl.edu.my
  • 2 School of Distance Education, Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia
  • 3 Universiti Kuala Lumpur, Branch Campus Malaysian Institute of Chemical and Bioengineering Technology, Lot 1988 Kawasan Perindustrian Bandar Vendor, Taboh Naning, Alor Gajah, Melaka, Malaysia
  • 4 Department of Food Science and Nutrition, College of Science, Taif University, P.O. box 11099, Taif, 21944, Saudi Arabia
  • 5 HICoE-Centre for Biofuel and Biochemical Research, Institute of Self Sustainable Building, Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, Seri Iskandar, 32610, Perak Darul Ridzuan, Malaysia; Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, 602105, India
  • 6 Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
  • 7 Institute of Bioproduct Development, Universiti Teknologi Malaysia, Johor, Malaysia; Department of Bioprocess and Polymer Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Johor, Malaysia. Electronic address: daniel@ibd.utm.my
  • 8 Faculty of Maritime Studies, Universiti Malaysia Terengganu, Terengganu, Malaysia. Electronic address: lfchuah@umt.edu.my
Chemosphere, 2023 Oct;338:139492.
PMID: 37451643 DOI: 10.1016/j.chemosphere.2023.139492

Abstract

Vancomycin is the last resort antibiotic for the treatment of severe bacterial keratitis. Its clinical application is limited due to its hydrophilicity and high molecular weight. To overcome this, this study aims to develop nanoparticles-laden contact lens for controlled ocular delivery of vancomycin. Polyvinyl alcohol (PVA) was used as encapsulant material. The nanoparticles had a negative surface charge and an average size of 147.6 nm. A satisfactory encapsulation efficiency (61.24%) was obtained. The release profile was observed to be slow and sustained, with a release rate of 1.29 μL mg-1 h-1 for 48 h. Five out of 6 test bacteria were suppressed by vancomycin nanoparticles-laden contact lens. Vancomycin is generally ineffective against Gram-negative bacteria and unable to pass through the outer membrane barrier. In this study, vancomycin inhibited Proteus mirabilis and Pseudomonas aeruginosa. Nano-encapsulation enables vancomycin to penetrate the Gram-negative cell wall and further destroy the bacterial cells. On Hohenstein challenge test, all test bacteria exhibited significant reduction in growth when exposed to vancomycin nanoparticles-laden contact lens. This study created an effective and long-lasting vancomycin delivery system via silicone hydrogel contact lenses, by using PVA as encapsulant. The antibiotic efficacy and vancomycin release should be further studied using ocular in vivo models.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.