Affiliations 

  • 1 Faculty of Physical Education, Yulin Normal University, Yulin, 719000 Shaanxi, China
  • 2 Faculty of Physical Education, Huainan Normal University, Huainan, 232038 Anhui, China
  • 3 Faculty of Mathematics and Science, Universiti Pendidikan Sultan Idris, Malaysia
Biomed Res Int, 2022;2022:5152911.
PMID: 36093408 DOI: 10.1155/2022/5152911

Abstract

Polyurethane, as a rubber material, can relieve the load on the ground and provide seismic design for the venue, which is of great significance for sports venues. In order to improve the seismic resistance and abrasion resistance of materials for sports fields and reduce accidents in sports, this article has carried out research on the polyurethane elastomer layered nanocomposites for sports fields and their preparation. Today's world is a challenging era of science and technology. The fields of biotechnology, information, medicine, energy, environment, and national defense and security are closely related to the development of high tech, and the requirements for materials are becoming increasingly diversified. Polymer nanocomposite coating has the dual characteristics of organic and inorganic components. It not only retains the advantages of a polymer but also endows it with versatility. It meets the current application needs. It is a hot spot in today's research. Among them, there are two major problems in the composite process of nanomaterials and polymers: dispersion and compatibility. How to improve the dispersion of nanoparticles and enhance the compatibility between nanoparticles and polymers is an urgent problem to be solved. In the method part, this article introduces a small amount of polyurethane and polyurethane elastomers formed after polyurethane modification and introduces layered compounds and nanocomposites and introduces several models involved in nanomaterials in terms of algorithms. In the analysis part, this paper conducts a comprehensive analysis of the hard segment mass fraction, mechanical properties, thermal decomposition behavior, degradation mechanism, and dynamic mechanical properties. With the increase of GO content, the tensile strength increases significantly and the elongation at break becomes smaller and smaller. When the GO content increases from 0% to 2%, the tensile properties of the WPU film increase from 2.6 MPa to 7.9 MPa and the fracture of the elongation decreased from 201.7% to 62.8%. This shows that the increase in GO content will make the composite material harder and brittle. It can be seen from the experimental results that the preparation of the polyurethane elastomer layered nanocomposite material designed in this paper has a good application effect on sports venues.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.