Affiliations 

  • 1 Chemical Engineering Department, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia; HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia
  • 2 Chemical Engineering Department, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia; HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia. Electronic address: lam.mankee@utp.edu.my
  • 3 HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia; Fundamental and Applied Sciences Department, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia
  • 4 Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT250, 98009 Miri, Sarawak, Malaysia
  • 5 Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT250, 98009 Miri, Sarawak, Malaysia; Energy and Environment Research Cluster, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009 Miri, Sarawak, Malaysia
  • 6 Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, 43000, Selangor, Malaysia
  • 7 Department of Chemical and Environmental Engineering, Malaysia - Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100 Kuala Lumpur, Malaysia
Biotechnol Adv, 2024;70:108280.
PMID: 37944570 DOI: 10.1016/j.biotechadv.2023.108280

Abstract

Microalgae showcase an extraordinary capacity for synthesizing high-value phytochemicals (HVPCs), offering substantial potential for diverse applications across various industries. Emerging research suggests that subjecting microalgae to abiotic stress during cultivation and the harvesting stages can further enhance the accumulation of valuable metabolites within their cells, including carotenoids, antioxidants, and vitamins. This study delves into the pivotal impacts of manipulating abiotic stress on microalgae yields, with a particular focus on biomass and selected HVPCs that have received limited attention in the existing literature. Moreover, approaches to utilising abiotic stress to increase HVPCs production while minimising adverse effects on biomass productivity were discussed. The present study also encompasses a techno-economic assessment (TEA) aimed at pinpointing significant bottlenecks in the conversion of microalgae biomass into high-value products and evaluating the desirability of various conversion pathways. The TEA methodology serves as a valuable tool for both researchers and practitioners in the quest to identify sustainable strategies for transforming microalgae biomass into high-value products and goods. Overall, this comprehensive review sheds light on the pivotal role of abiotic stress in microalgae cultivation, promising insights that could lead to more efficient and sustainable approaches for HVPCs production.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.