Displaying all 17 publications

Abstract:
Sort:
  1. Tan IS, Lee KT
    Bioresour Technol, 2015 May;184:386-94.
    PMID: 25465785 DOI: 10.1016/j.biortech.2014.10.146
    A novel concept for the synthesis of a stable polymer hybrid matrix bead was developed in this study. The beads were further applied for enzyme immobilization to produce stable and active biocatalysts with low enzyme leakage, and high immobilization efficiency, enzyme activity, and recyclability. The immobilization conditions, including PEI concentration, activation time and pH of the PEI solution were investigated and optimized. All formulated beads were characterized for its functionalized groups, composition, surface morphology and thermal stability. Compared with the free β-glucosidase, the immobilized β-glucosidase on the hybrid matrix bead was able to tolerate broader range of pH values and higher reaction temperature up to 60 °C. The immobilized β-glucosidase was then used to hydrolyse pretreated macroalgae cellulosic residue (MCR) for the production of reducing sugar and a hydrolysis yield of 73.4% was obtained. After repeated twelve runs, immobilized β-glucosidase retained about 75% of its initial activity.
  2. Tan IS, Lee KT
    Bioresour Technol, 2016 Jan;199:336-346.
    PMID: 26283313 DOI: 10.1016/j.biortech.2015.08.008
    The aim of this work was to evaluate the efficacy of red macroalgae Eucheuma cottonii (EC) as feedstock for third-generation bioethanol production. Dowex (TM) Dr-G8 was explored as a potential solid catalyst to hydrolyzed carbohydrates from EC or macroalgae extract (ME) and pretreatment of macroalgae cellulosic residue (MCR), to fermentable sugars prior to fermentation process. The highest total sugars were produced at 98.7 g/L when 16% of the ME was treated under the optimum conditions of solid acid hydrolysis (8% (w/v) Dowex (TM) Dr-G8, 120°C, 1h) and 2% pretreated MCR (P-MCR) treated by enzymatic hydrolysis (pH 4.8, 50°C, 30 h). A two-stream process resulted in 11.6g/L of bioethanol from the fermentation of ME hydrolysates and 11.7 g/L from prehydrolysis and simultaneous saccharification and fermentation of P-MCR. The fixed price of bioethanol obtained from the EC is competitive with that obtained from other feedstocks.
  3. Tan IS, Lee KT
    Carbohydr Polym, 2015 Jun 25;124:311-21.
    PMID: 25839825 DOI: 10.1016/j.carbpol.2015.02.046
    The aim of this study is to investigate the technical feasibility of converting macroalgae cellulosic residue (MCR) into bioethanol. An attempt was made to present a novel, environmental friendly and economical pretreatment process that enhances enzymatic conversion of MCR to sugars using Dowex (TM) Dr-G8 as catalyst. The optimum yield of glucose reached 99.8% under the optimal condition for solid acid pretreatment (10%, w/v biomass loading, 4%, w/v catalyst loading, 30min, 120°C) followed by enzymatic hydrolysis (45FPU/g of cellulase, 52CBU/g of β-glucosidase, 50°C, pH 4.8, 30h). The yield of sugar obtained was found more superior than conventional pretreatment process using H2SO4 and NaOH. Biomass loading for the subsequent simultaneous saccharification and fermentation (SSF) of the pretreated MCR was then optimized, giving an optimum bioethanol yield of 81.5%. The catalyst was separated and reused for six times, with only a slight drop in glucose yield.
  4. Tan IS, Lam MK, Lee KT
    Carbohydr Polym, 2013 Apr 15;94(1):561-6.
    PMID: 23544575 DOI: 10.1016/j.carbpol.2013.01.042
    Utilization of macroalgae biomass for bioethanol production appears as an alternative source to lignocellulosic materials. In this study, for the first time, Amberlyst (TM)-15 was explored as a potential catalyst to hydrolyze carbohydrates from Eucheuma cottonii extract to simple reducing sugar prior to fermentation process. Several important hydrolysis parameters were studied for process optimization including catalyst loading (2-5%, w/v), reaction temperature (110-130°C), reaction time (0-2.5 h) and biomass loading (5.5-15.5%, w/v). Optimum sugar yield of 39.7% was attained based on the following optimum conditions: reaction temperature at 120°C, catalyst loading of 4% (w/v), 12.5% (w/v) of biomass concentration and reaction time of 1.5h. Fermentation of the hydrolysate using Saccharomyces cerevisiae produced 0.33 g/g of bioethanol yield with an efficiency of 65%. The strategy of combining heterogeneous-catalyzed hydrolysis and fermentation with S. cerevisiae could be a feasible strategy to produce bioethanol from macroalgae biomass.
  5. Chai CY, Tan IS, Foo HCY, Lam MK, Tong KTX, Lee KT
    Bioresour Technol, 2021 Jun;330:124930.
    PMID: 33735730 DOI: 10.1016/j.biortech.2021.124930
    Managing plastic waste remains an urgent environmental concern and switching to biodegradable plastics can reduce the dependence on depleting fossil fuels. This study emphasises the efficacy of macroalgae wastes, Eucheuma denticulatum residues (EDRs), as potential alternate feedstock to produce l-lactic acid (l-LA), the monomer of polylactic acid, through fermentation. An innovative environmental friendly strategy was explored in this study to develop a glucose platform from EDRs: pretreatment with microwave-assisted autohydrolysis (MAA) applied to enhance enzymatic hydrolysis of EDRs. The results indicate that MAA pretreatment significantly increased the digestibility of EDRs during the enzymatic hydrolysis process. The optimum pretreatment conditions were 120 °C and 50 min, resulting in 96.5% of enzymatic digestibility after 48 h. The high l-LA yield of 98.6% was obtained using pretreated EDRs and supplemented with yeast extract. The energy analysis implies that MAA pretreatment could further improve the overall energy efficiency of the process.
  6. Tiong ACY, Tan IS, Foo HCY, Lam MK, Mahmud HB, Lee KT
    Carbohydr Polym, 2020 Dec 01;249:116875.
    PMID: 32933695 DOI: 10.1016/j.carbpol.2020.116875
    This study aims to derive regenerated cellulose (RC) from lignin/hemicellulose-free Eucheuma cottonii for its independent stabilization of Pickering emulsion. The RC exhibits a fibrillar morphology with diameters ranging from 17 to 157 nm and stabilizes paraffin oil-Pickering emulsions without any co-stabilizer. It was found that the emulsion stability, viscosities and viscoelasticity correlate positively with RC concentration. All emulsion samples depict gel-like behavior. Under different oil fraction at a constant RC concentration, anomalies were found in emulsion properties. This can be attributed to the aggregating behavior of RC at the oil-water interface, the degree of gel-like structure formation due to materials interaction within the emulsion system, and the variations of microscopic droplet cluster interactions under shear condition. The emulsions portrayed excellent robustness against harsh salinity, high temperature and extreme pH fluctuation. Hence, these findings had elucidated the plausibility of macroalgae-derived RC in enhanced oil recovery application.
  7. Tong KTX, Tan IS, Foo HCY, Tiong ACY, Lam MK, Lee KT
    Bioresour Technol, 2021 Dec;342:125880.
    PMID: 34592620 DOI: 10.1016/j.biortech.2021.125880
    The development of an efficient third-generation L-lactic acid (L-LA) production process from Eucheuma denticulatum extract (EDE) was achieved in this study. Microwave-assisted dilute acid hydrolysis (MADAH) and microwave-assisted hydrothermal hydrolysis (MAHTH) were chosen as the hydrolysis of EDE for the objective of increasing galactose yield. Single-factor optimization of hydrolysis of the EDE was studied, MADAH had high performance in galactose production relative to MAHTH, in which the yield and optimal conditions for both processes were 50.7% (0.1 M H2SO4, 120 °C for 25 min) and 47.8% (0 M H2SO4,160 °C for 35 min), respectively. For fermentation, the optimal L-LA yield was achieved at the inoculum cell density of 4% (w/w) Bacillus coagulans ATCC 7050 with 89.4% and 6% (w/w) Lactobacillus acidophilus LA-14 with 87.6%. In addition, lipid-extracted Chlorella vulgaris residues (CVRs) as co-nutrient supplementation increased the relative abundance of B. coagulans ATCC 7050, thus benefiting L-LA production.
  8. Tiong ACY, Tan IS, Foo HCY, Lam MK, Mahmud HB, Lee KT
    J Colloid Interface Sci, 2022 Feb;607(Pt 2):1131-1141.
    PMID: 34571300 DOI: 10.1016/j.jcis.2021.09.042
    The synthesis of Janus nanosheets using κ-carrageenan (κ-Ca) as a green template endows a greener and more straightforward method compared to traditional approaches of using wax template. We hypothesize that the hydrogen bonding interaction between κ-Ca and graphene oxide (GO) allows partial masking of GO's single facet, paving the way for the asymmetric modification of the exposed surface. GO is first encapsulated within the porous hydrogel matrix formed by κ-Ca to isolate one of the facets. The exposed surface was then selectively hydrophobized to produce an amphiphilic asymmetrically modified graphene oxide (AMGO). The properties of AMGO synthesized under different κ-Ca/GO ratios were studied. The κ-Ca/GO interactions and the properties of GO and AMGO were investigated and characterized. AMGO was successfully produced with a yield of 90.37 % under optimized synthesis conditions. The separation of κ-Ca and AMGO was conducted without organic solvents, and the κ-Ca could be subsequently recovered. Furthermore, the porous hydrogel matrix formed by κ-Ca and GO exhibited excellent shape-retaining properties with high thermal tolerance of up to 50 °C. Given these benefits, this newly developed method endows sustainability and open the possibility of formulating more flexible material synthesis protocols.
  9. Teh YY, Lee KT, Chen WH, Lin SC, Sheen HK, Tan IS
    Bioresour Technol, 2017 Dec;246:20-27.
    PMID: 28781203 DOI: 10.1016/j.biortech.2017.07.101
    This study aims to produce biochar and sugars from a macroalga Eucheuma denticulatum using dilute sulfuric acid hydrolysis along with microwave-assisted heating. The reactions were operated at sulfuric acid concentrations of 0.1 and 0.2M, reaction temperatures of 150-170°C and a heating time of 10min. Compared to the raw macroalga, biochar qualities were improved with increased carbon content and lower ash and moisture contents. The calorific value of the biochar could be intensified up to 45%, and 39% of energy yield was recovered. Apart from producing biochar, the highest total reducing sugars were 51.47g/L (74.84% yield) along with a low by-product 5-HMF of 0.20g/L, when the biomass was treated under the optimum conditions at 160°C with 0.1M H2SO4. Thus, this study demonstrated that macroalgae could be potentially used as biomass feedstock under microwave-assisted acid hydrolysis for the production of biofuel and value-added products.
  10. Tong KTX, Tan IS, Foo HCY, Show PL, Lam MK, Wong MK
    Bioengineered, 2023 Dec;14(1):246-289.
    PMID: 37482680 DOI: 10.1080/21655979.2023.2236842
    The imminent need for transition to a circular biorefinery using microbial fuel cells (MFC), based on the valorization of renewable resources, will ameliorate the carbon footprint induced by industrialization. MFC catalyzed by bioelectrochemical process drew significant attention initially for its exceptional potential for integrated production of biochemicals and bioenergy. Nonetheless, the associated costly bioproduct production and slow microbial kinetics have constrained its commercialization. This review encompasses the potential and development of macroalgal biomass as a substrate in the MFC system for L-lactic acid (L-LA) and bioelectricity generation. Besides, an insight into the state-of-the-art technological advancement in the MFC system is also deliberated in detail. Investigations in recent years have shown that MFC developed with different anolyte enhances power density from several µW/m2 up to 8160 mW/m2. Further, this review provides a plausible picture of macroalgal-based L-LA and bioelectricity circular biorefinery in the MFC system for future research directions.
  11. Chong SL, Tan IS, Foo HCY, Chan YS, Lam MK, Lee KT
    Bioresour Technol, 2022 Nov;364:128136.
    PMID: 36257523 DOI: 10.1016/j.biortech.2022.128136
    This study aims to establish an efficient pretreatment method that facilitates the conversion of sugars from macroalgae wastes, Eucheuma cottonii residues (ECRs) during hydrolysis and subsequently enhances l-lactic acid (L-LA) production. Hence, ultrasonic-assisted molten salt hydrates (UMSHs) pretreatment was proposed to enhance the accessibility of ECRs to hydrolyze into glucose through dilute acid hydrolysis (DAH). The obtained hydrolysates were employed as the substrate in producing L-LA by separate hydrolysis and fermentation (SHF). The maximum glucose yield (97.75 %) was achieved using UMSHs pretreated ECRs with 40 wt% ZnCl2 at 80 °C for 2 h and followed with DAH. The optimum glucose to L-LA yield obtained for SHF was 90.08 % using 5 % (w/w) inoculum cell densities of B. coagulans ATCC 7050 with yeast extract (YE). A comparable performance (89.65 %) was obtained using a nutrient combination (lipid-extracted Chlorella vulgaris residues (CVRs), vitamin B3, and vitamin B5) as a partial alternative for YE.
  12. Tong KTX, Tan IS, Foo HCY, Lam MK, Lim S, Lee KT
    PMID: 35316983 DOI: 10.1007/s13399-022-02561-7
    The extensive growth of energy and plastic demand has raised concerns over the depletion of fossil fuels. Moreover, the environmental conundrums worldwide integrated with global warming and improper plastic waste management have led to the development of sustainable and environmentally friendly biofuel (bioethanol) and biopolymer (lactic acid, LA) derived from biomass for fossil fuels replacement and biodegradable plastic production, respectively. However, the high production cost of bioethanol and LA had limited its industrial-scale production. This paper has comprehensively reviewed the potential and development of third-generation feedstock for bioethanol and LA production, including significant technological barriers to be overcome for potential commercialization purposes. Then, an insight into the state-of-the-art hydrolysis and fermentation technologies using macroalgae as feedstock is also deliberated in detail. Lastly, the sustainability aspect and perspective of macroalgae biomass are evaluated economically and environmentally using a developed cascading system associated with techno-economic analysis and life cycle assessment, which represent the highlights of this review paper. Furthermore, this review provides a conceivable picture of macroalgae-based bioethanol and lactic acid biorefinery and future research directions that can be served as an important guideline for scientists, policymakers, and industrial players.
  13. Chong CC, Cheng YW, Ishak S, Lam MK, Lim JW, Tan IS, et al.
    Sci Total Environ, 2022 Jan 10;803:150070.
    PMID: 34525689 DOI: 10.1016/j.scitotenv.2021.150070
    To suffice the escalating global energy demand, microalgae are deemed as high potential surrogate feedstocks for liquid fuels. The major encumbrance for the commercialization of microalgae cultivation is due to the high costs of nutrients such as carbon, phosphorous, and nitrogen. Meanwhile, the organic-rich anaerobic digestate which is difficult to be purified by conventional techniques is appropriate to be used as a low-cost nutrient source for the economic viability and sustainability of microalgae production. This option is also beneficial in terms of reutilize the organic fraction of solid waste instead of discarded as zero-value waste. Anaerobic digestate is the side product of biogas production during anaerobic digestion process, where optimum nutrients are needed to satisfy the physiological needs to grow microalgae. Besides, the turbidity, competing biological contaminants, ammonia and metal toxicity of the digestate are also potentially contributing to the inhibition of microalgae growth. Thus, this review is aimed to explicate the feasibility of utilizing the anaerobic digestate to cultivate microalgae by evaluating their potential challenges and solutions. The proposed potential solutions (digestate dilution and pre-treatment, microalgae strain selection, extra organics addition, nitrification and desulfurization) corresponding to the state-of-the-art challenges are applicable as future directions of the research.
  14. Hor CJ, Tan YH, Mubarak NM, Tan IS, Ibrahim ML, Yek PNY, et al.
    Environ Res, 2023 Mar 01;220:115169.
    PMID: 36587722 DOI: 10.1016/j.envres.2022.115169
    To date, the development of renewable fuels has become a normal phenomenon to solve the problem of diesel fuel emissions and the scarcity of fossil fuels. Biodiesel production has some limitations, such as two-step processes requiring high free fatty acids (FFAs), oil feedstocks and gum formation. Hydrotreated vegetable oil (HVO) is a newly developed international renewable diesel that uses renewable feedstocks via the hydrotreatment process. Unlike FAME, FFAs percentage doesn't affect the HVO production and sustains a higher yield. The improved characteristics of HVO, such as a higher cetane value, better cold flow properties, lower emissions and excellent oxidation stability for storage, stand out from FAME biodiesel. Moreover, HVO is a hydrocarbon without oxygen content, but FAME is an ester with 11% oxygen content which makes it differ in oxidation stability. Waste sludge palm oil (SPO), an abundant non-edible industrial waste, was reused and selected as the feedstock for HVO production. Techno-economical and energy analyses were conducted for HVO production using Aspen HYSYS with a plant capacity of 25,000 kg/h. Alternatively, hydrogen has been recycled to reduce the hydrogen feed. With a capital investment of RM 65.86 million and an annual production cost of RM 332.56 million, the base case of the SPO-HVO production process was more desirable after consideration of all economic indicators and HVO purity. The base case of SPO-HVO production could achieve a return on investment (ROI) of 89.03% with a payback period (PBP) of 1.68 years. The SPO-HVO production in this study has observed a reduction in the primary greenhouse gas, carbon dioxide (CO2) emission by up to 90% and the total annual production cost by nearly RM 450 million. Therefore, SPO-HVO production is a potential and alternative process to produce biobased diesel fuels with waste oil.
  15. Wu G, Tham PE, Chew KW, Munawaroh HSH, Tan IS, Wan-Mohtar WAAQI, et al.
    Bioresour Technol, 2023 Nov;388:129748.
    PMID: 37714493 DOI: 10.1016/j.biortech.2023.129748
    The rapid expansion of industrialization and continuous population growth have caused a steady increase in energy consumption. Despite using renewable energy, such as bioethanol, to replace fossil fuels had been strongly promoted, however the outcomes were underwhelming, resulting in excessive greenhouse gases (GHG) emissions. Microalgal biochar, as a carbon-rich material produced from the pyrolysis of biomass, provides a promising solution for achieving net zero emission. By utilizing microalgal biochar, these GHG emissions can be captured and stored efficiently. It also enhances soil fertility, improves water retention, and conduct bioremediation in agriculture and environmental remediation field. Moreover, incorporating microalgal biochar into a zero-waste biorefinery could boost the employ of biomass feedstocks effectively to produce valuable bioproducts while minimizing waste. This contributes to sustainability and aligns with the concepts of a circular bioeconomy. In addition, some challenges like commercialization and standardization will be addressed in the future.
  16. Bin Abu Sofian ADA, Lim HR, Chew KW, Khoo KS, Tan IS, Ma Z, et al.
    Environ Pollut, 2024 Feb 01;342:123024.
    PMID: 38030108 DOI: 10.1016/j.envpol.2023.123024
    The pursuit of carbon neutrality confronts the twofold challenge of meeting energy demands and reducing pollution. This review article examines the potential of gasifying plastic waste and biomass as innovative, sustainable sources for hydrogen production, a critical element in achieving environmental reform. Addressing the problem of greenhouse gas emissions, the work highlights how the co-gasification of these feedstocks could contribute to environmental preservation by reducing waste and generating clean energy. Through an analysis of current technologies, the potential for machine learning to refine gasification for optimal hydrogen production is revealed. Additionally, hydrogen storage solutions are evaluated for their importance in creating a viable, sustainable energy infrastructure. The economic viability of these production methods is critically assessed, providing insights into both their cost-effectiveness and ecological benefits. Findings indicate that machine learning can significantly improve process efficiencies, thereby influencing the economic and environmental aspects of hydrogen production. Furthermore, the study presents the advancements in these technologies and their role in promoting a transition to a green economy and circular energy practices. Ultimately, the review delineates how integrating hydrogen production from unconventional feedstocks, bolstered by machine learning and advanced storage, can contribute to a sustainable and pollution-free future.
  17. Suparmaniam U, Lam MK, Lim JW, Tan IS, Chin BLF, Shuit SH, et al.
    Biotechnol Adv, 2024;70:108280.
    PMID: 37944570 DOI: 10.1016/j.biotechadv.2023.108280
    Microalgae showcase an extraordinary capacity for synthesizing high-value phytochemicals (HVPCs), offering substantial potential for diverse applications across various industries. Emerging research suggests that subjecting microalgae to abiotic stress during cultivation and the harvesting stages can further enhance the accumulation of valuable metabolites within their cells, including carotenoids, antioxidants, and vitamins. This study delves into the pivotal impacts of manipulating abiotic stress on microalgae yields, with a particular focus on biomass and selected HVPCs that have received limited attention in the existing literature. Moreover, approaches to utilising abiotic stress to increase HVPCs production while minimising adverse effects on biomass productivity were discussed. The present study also encompasses a techno-economic assessment (TEA) aimed at pinpointing significant bottlenecks in the conversion of microalgae biomass into high-value products and evaluating the desirability of various conversion pathways. The TEA methodology serves as a valuable tool for both researchers and practitioners in the quest to identify sustainable strategies for transforming microalgae biomass into high-value products and goods. Overall, this comprehensive review sheds light on the pivotal role of abiotic stress in microalgae cultivation, promising insights that could lead to more efficient and sustainable approaches for HVPCs production.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links