Affiliations 

  • 1 Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009 Miri, Sarawak, Malaysia
  • 2 Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009 Miri, Sarawak, Malaysia. Electronic address: tan.s@curtin.edu.my
  • 3 Chemical Engineering Department, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia; HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia
  • 4 School of Chemical Engineering, Universiti Sains Malaysia, Engineering Campus, 14300 Nibong Tebal, Penang, Malaysia
Bioresour Technol, 2021 Dec;342:125880.
PMID: 34592620 DOI: 10.1016/j.biortech.2021.125880

Abstract

The development of an efficient third-generation L-lactic acid (L-LA) production process from Eucheuma denticulatum extract (EDE) was achieved in this study. Microwave-assisted dilute acid hydrolysis (MADAH) and microwave-assisted hydrothermal hydrolysis (MAHTH) were chosen as the hydrolysis of EDE for the objective of increasing galactose yield. Single-factor optimization of hydrolysis of the EDE was studied, MADAH had high performance in galactose production relative to MAHTH, in which the yield and optimal conditions for both processes were 50.7% (0.1 M H2SO4, 120 °C for 25 min) and 47.8% (0 M H2SO4,160 °C for 35 min), respectively. For fermentation, the optimal L-LA yield was achieved at the inoculum cell density of 4% (w/w) Bacillus coagulans ATCC 7050 with 89.4% and 6% (w/w) Lactobacillus acidophilus LA-14 with 87.6%. In addition, lipid-extracted Chlorella vulgaris residues (CVRs) as co-nutrient supplementation increased the relative abundance of B. coagulans ATCC 7050, thus benefiting L-LA production.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.