Affiliations 

  • 1 Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor, Malaysia
  • 2 Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor, Malaysia; Institute of Bioproduct Development, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor, Malaysia
  • 3 Institute of Bioproduct Development, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor, Malaysia; Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor, Malaysia
  • 4 Laboratory of Proteomics, University-CoE Research Center for Bio-Molecule Engineering, Universitas Airlangga, Kampus C-UNAIR, Surabaya, East Java, Indonesia
  • 5 Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor, Malaysia; Institute of Bioproduct Development, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor, Malaysia. Electronic address: r-rosli@utm.my
Int J Biol Macromol, 2024 Jan;256(Pt 1):128260.
PMID: 38000618 DOI: 10.1016/j.ijbiomac.2023.128260

Abstract

Pectinases are outstanding multienzymes, which have the potential to produce new emerging pectic-oligosaccharides (POS) via enzymatic hydrolysis of pectin. However, free pectinase is unable to undergo repeated reaction for the production of POS. This study proposed a sustainable biocatalyst of pectinases known as cross-linked pectinase aggregates (CLPA). Pectinase from Aspergillus aculeatus was successfully precipitated using 2 mg/mL pectinase and 60 % acetone for 20 min at 20 °C, which remained 36.3 % of its initial activity. The prepared CLPA showed the highest activity recovery (85.0 %), under the optimised conditions (0.3 % (v/v) starch and glutaraldehyde mixture (St/Ga), 1.5: 1 of St/Ga, 25 °C, 1.5 h). Furthermore, pectin-degrading enzymes from various sources were used to produce different CLPA. The alteration of pectinase secondary structure gave high stability in acidic condition (pH 4), thermostability, deactivation energy and half-life, and improved storage stability at 4 °C for 30 days. Similarly to their free counterpart, the CLPA exhibited comparable enzymatic reaction kinetics and could be reused eight times with approximately 20 % of its initial activity. The developed CLPA does not only efficaciously produced POS from pectin as their free form, but also exhibited better operational stability and reusability, making it more suitable for POS production.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

Similar publications